OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2687–2692

Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach–Zehnder interferometer

Sara Bakhshi, Mohammad Kazem Moravvej-Farshi, and Majid Ebnali-Heidari  »View Author Affiliations


Applied Optics, Vol. 51, Issue 14, pp. 2687-2692 (2012)
http://dx.doi.org/10.1364/AO.51.002687


View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design procedure for an ultracompact low-power all-optical modulator based on a dispersion-engineered slow-light regime in a photonic crystal Mach–Zehnder interferometer (PhC MZI), selectively infiltrated by nonlinear optical fluids. The dispersionless slow-light regime enhancing the nonlinearities enabled a 22 μm long PhC MZI to operate as a modulator with an input power as low as 3mW/μm. Simulations reveal that the switching threshold can be controlled by varying the optofluidic infiltration.

© 2012 Optical Society of America

OCIS Codes
(230.4110) Optical devices : Modulators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: November 9, 2011
Revised Manuscript: January 15, 2012
Manuscript Accepted: January 20, 2012
Published: May 10, 2012

Citation
Sara Bakhshi, Mohammad Kazem Moravvej-Farshi, and Majid Ebnali-Heidari, "Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach–Zehnder interferometer," Appl. Opt. 51, 2687-2692 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-14-2687


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–449 (2008). [CrossRef]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  3. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Joannopoulos, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002). [CrossRef]
  4. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009). [CrossRef]
  5. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010). [CrossRef]
  6. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17, 18340–18353 (2009). [CrossRef]
  7. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640  Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010). [CrossRef]
  8. T. F. Kraus, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  9. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 83, 851 (2003). [CrossRef]
  10. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, “Observation of pulse compression in photonic crystal coupled cavity waveguides,” IEEE J. Lightwave Technol. 22, 514 (2004). [CrossRef]
  11. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  12. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  13. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007). [CrossRef]
  14. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  15. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007). [CrossRef]
  16. L. Dai, T. Li, and C. Jiang, “Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide,” J. Opt. Soc. Am. B 28, 1622–1626 (2011). [CrossRef]
  17. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  18. A. Casas Bedoya, P. Domachuk, C. Monat, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, and B. J. Eggleton, “Optofluidic dispersion engineering of photonic crystal waveguides,” Proc. SPIE 7949, 794904 (2011).
  19. L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J. 2, 404–414 (2010). [CrossRef]
  20. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  21. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  22. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999). [CrossRef]
  23. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits, ” Opt. Lett. 31, 59–61 (2006). [CrossRef]
  24. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits, ” Appl. Phys. Lett. 89, 21111 (2006). [CrossRef]
  25. C. L. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008). [CrossRef]
  26. H. Kurt and D. S. Citrin, “Reconfigurable multimode photonic-crystal waveguides, ” Opt. Express 16, 11995–12001 (2008). [CrossRef]
  27. D. R. Lide, Handbook of Chemistry and Physics, 90th ed. (CRC, 2010), Section 12.
  28. A. R. Hawkins and H. Schmidt, Handbook of Optofluidics (CRC, 2010), Appendix B.
  29. M. H. Bitarafan, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for postfabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration,” Appl. Opt. 17, 2622–2627 (2011). [CrossRef]
  30. S. Bakhshi, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration,” Appl. Opt. 50, 4048–4053 (2011). [CrossRef]
  31. “Introduction to Optical Liquids,” 2011, http://www.cargille.com/opticalintro.shtml .
  32. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). [CrossRef]
  33. G. S. He and P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990). [CrossRef]
  34. T. J. Bridges, A. R. Chraplyvy, J. G. Bergman, and R. M. Hart, “Broadband infrared generation in liquidbromine-core optical fibers,” Opt. Lett. 7, 566–568 (1982). [CrossRef]
  35. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J.-M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13, 4786–4791 (2005). [CrossRef]
  36. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14, 4135–4140 (2006). [CrossRef]
  37. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  38. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide-editing modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited