OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2693–2700

Optical throughput of the Sagnac interferometer with a modified large optical path difference

Chunmin Zhang, Jingjing Ai, and Peng Gao  »View Author Affiliations


Applied Optics, Vol. 51, Issue 14, pp. 2693-2700 (2012)
http://dx.doi.org/10.1364/AO.51.002693


View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The basic principle of Sagnac interferometer with modified large optical path difference is expounded on in this paper. According to the Fresnel formula, electromagnetic field energy, and energy flux, the transmittance and reflectance of each interface of a Sagnac interferometer are calculated, respectively, and then the exact expressions of the optical throughput changing with the incident angle, the angle of the incident plane, and paper plane (the bottom plane of Sagnac interferometer) and Sagnac interferometer acute angles are given. Furthermore, we analyze the effects of various parameters on the optical throughput by computer simulation, and some important conclusions are obtained. This work is of great scientific significance to the static, real-time simultaneous detection of upper atmospheric wind field.

© 2012 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 13, 2012
Manuscript Accepted: February 15, 2012
Published: May 10, 2012

Citation
Chunmin Zhang, Jingjing Ai, and Peng Gao, "Optical throughput of the Sagnac interferometer with a modified large optical path difference," Appl. Opt. 51, 2693-2700 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-14-2693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Chun-Min, Z. Hua-Chun, and Z. Bao-Chang, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011). [CrossRef]
  2. Z. Chun-Min, Z. Jian-Ke, and S. Yao, “Influences of the thickness, misalignment, and dispersion of the Savart polariscope on the optical path difference and spectral resolution in the polarization interference imaging spectrometer,” Appl. Opt. 50, 3497–3504(2011). [CrossRef]
  3. Z. Chun-Min, W. Hai-Ying, and L. Jie, “Fourier transform hyper-spectral imaging polarization meter for remote sensing,” Opt. Eng. 50, 066201–5 (2011). [CrossRef]
  4. Z. Chun-Min and M. Ting-Kui, “Response to the comment on ‘Design and analysis of wide-field-of-view polarization imaging spectrometer’,” Opt. Eng. 50, 049701 (2011).
  5. Z. Chun-Min and J. Xiao-Hua, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010). [CrossRef]
  6. J. Xiao-Hua, Z. Chun-Min, Z. Lin, and Z. Bao-Chang, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010). [CrossRef]
  7. Z. Chun-Min, Z. Bao-Chang, Y. Zhi-Lin, and H. Wei-Jian, “Analysis of signal-to-noise ratio of ultra-compact static polarization interference imaging spectrometer,” J. Opt. A 11, 085401 (2009). [CrossRef]
  8. Z. Chun-Min, Z. Bao-Chang, X. Bin, and L. Ying-Cai, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006). [CrossRef]
  9. P. Zhi-Hong, Z. Chun-Min, and Z. Bao-Chang, “The transmission efficiency of Savart polariscope in Polarization Interference Imaging Spectrometer,” Acta Phys. Sin.-Ch. Ed. 55, 6374–6381 (2006).
  10. Y. Jian-Yong, Z. Chun-Min, Z. Bao-Chang, and L. Ying-Cai, “Error analysis of four-intensity algorithm used for the measurement of upper atmosphere,” Acta Phys. Sin.-Ch. Ed. 57, 67–73 (2008).
  11. W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensors and results,” Appl. Opt. 35, 2902–2909 (1996). [CrossRef]
  12. R. G. Sellar and J. B. Rafert, “The effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994). [CrossRef]
  13. J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier transform imaging spectrometer,” Appl. Opt. 34, 7228–7230(1995). [CrossRef]
  14. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10725–10750 (1993). [CrossRef]
  15. R. Kai, Z. Chun-Min, and Z. Bao-Chang, “Exact calculation of the optical path difference and lateral displacement of modified large optical path difference Sagnac interferometer in full view field used in upper atmospheric wind field measurement,” Acta Phys. Sin.-Ch. Ed. 57, 5435–5441 (2008).
  16. Z. Chun-Min, A. Jing-Jing, and R. Wen-Yi, “Exact calculation of the minimal thickness of the large optical path difference wind imaging interferometer,” Chinese Phys. B 20, 020701(1–6) (2011).
  17. M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991). [CrossRef]
  18. R. J. Bell, Introductory Fourier Transform Spectroscopy, (Academic Press, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited