OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2752–2758

On the sensitivity of generic porous optical sensors

Tom G. Mackay  »View Author Affiliations

Applied Optics, Vol. 51, Issue 14, pp. 2752-2758 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A porous material was considered as a platform for optical sensing. It was envisaged that the porous material was infiltrated by a fluid that contains an agent to be sensed. Changes in the optical properties of the infiltrated porous material provide the basis for detection of the agent to be sensed. Using a homogenization approach based on the Bruggeman formalism, wherein the infiltrated porous material was regarded as a homogenized composite material, the sensitivity of such a sensor was investigated. For the case of an isotropic dielectric porous material of relative permittivity ϵa and an isotropic dielectric fluid of relative permittivity ϵb, it was found that the sensitivity was maximized when there was a large contrast between ϵa and ϵb; the maximum sensitivity was achieved at midrange values of porosity. Especially high sensitivities may be achieved for ϵb close to unity when ϵa1, for example. Furthermore, higher sensitivities may be achieved by incorporating pores that have elongated spheroidal shapes.

© 2012 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: January 12, 2012
Revised Manuscript: February 15, 2012
Manuscript Accepted: February 20, 2012
Published: May 10, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Tom G. Mackay, "On the sensitivity of generic porous optical sensors," Appl. Opt. 51, 2752-2758 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. De Stefano, L. Rotiroti, E. De Tommasi, I. Rea, I. Rendina, M. Canciello, G. Maglio, and R. Palumbo, “Hybrid polymer-porous silicon photonic crystals for optical sensing,” J. Appl. Phys. 106, 023109 (2009). [CrossRef]
  2. E. Pinet, S. Dube, M. Vachon-Savary, J.-S. Cote, and M. Poliquin, “Sensitive chemical optic sensor using birefringent porous glass for the detection of volatile organic compounds,” IEEE Sens. J. 6, 854–860 (2006). [CrossRef]
  3. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754–3764 (2005). [CrossRef]
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003). [CrossRef]
  5. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008). [CrossRef]
  6. S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity–based biosensors,” Biosens. Bioelectron. 25, 957–966 (2010). [CrossRef]
  7. A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, “Sculptured thin films (STFs) for optical, chemical and biological applications,” Innovations Mater. Res. 1, 165–176 (1996).
  8. A. Lakhtakia, “On determining gas concentrations using thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B 52, 243–250 (1998). [CrossRef]
  9. A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001). [CrossRef]
  10. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE, 2005).
  11. R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000). [CrossRef]
  12. J. A. Polo, “Sculptured thin films,” in Micromanufacturing and Nanotechnology, N. P. Mahalik, ed. (Springer, 2005), pp. 357–381.
  13. S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. B 25, 2611–2615 (2007). [CrossRef]
  14. J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and chiral sculptured thin film,” Proc. R. Soc. London Ser. A 465, 87–107 (2009). [CrossRef]
  15. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009). [CrossRef]
  16. J. A. Polo, T. G. Mackay, and A. Lakhtakia, “Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film,” J. Opt. Soc. Am. B 28, 2656–2666 (2011). [CrossRef]
  17. T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012). [CrossRef]
  18. The entire analysis presented herein may also be applied to lossless, homogeneous, isotropic magnetic materials, by replacing relative permittivities by the corresponding relative permeabilities throughout.
  19. L. Ward, The Optical Constants of Bulk Materials and Films, 2nd ed. (Institute of Physics, 2000).
  20. T. G. Mackay, “Effective constitutive parameters of linear nanocomposites in the long-wavelength regime,” J. Nanophoton. 5, 051001 (2011). [CrossRef]
  21. T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010). [CrossRef]
  22. T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010). [CrossRef]
  23. T. G. Mackay and A. Lakhtakia, “Modeling columnar thin films as platforms for surface–plasmonic–polaritonic optical sensing,” Photon. Nanostr. Fundam. Appl. 8, 140–149(2010). [CrossRef]
  24. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997). [CrossRef]
  25. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Erratum,” Microw. Opt. Technol. Lett. 22, 221 (1999). [CrossRef]
  26. B. Michel, “A Fourier space approach to the pointwise singularity of an anisotropic dielectric medium,” Int. J. Appl. Electromagn. Mech. 8, 219–227 (1997).
  27. B. Michel and W. S. Weiglhofer, “Pointwise singularity of dyadic Green function in a general bianisotropic medium,” Arch. Elektron. Übertrag. 51, 219–223 (1997).
  28. B. Michel and W. S. Weiglhofer, “Erratum,” Arch. Elektron. Übertrag. 52, 31 (1998).
  29. T. G. Mackay, A. Lakhtakia, and R. A. Depine, “Uniaxial dielectric mediums with hyperbolic dispersion relations,” Microw. Opt. Technol. Lett. 48, 363–367 (2006). [CrossRef]
  30. L. Bremer, R. Tuinier, and S. Jahromi, “High refractive index nanocomposite fluids for immersion lithography,” Langmuir 25, 2390–2401 (2009). [CrossRef]
  31. P. Schiebener and J. Straub, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990). [CrossRef]
  32. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011). [CrossRef]
  33. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010). [CrossRef]
  34. J. Shin, J. T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009). [CrossRef]
  35. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011). [CrossRef]
  36. A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007). [CrossRef]
  37. G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007). [CrossRef]
  38. M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011). [CrossRef]
  39. J. J. H. Cook, K. L. Tsakmakidis, and O. Hess, “Ultralow-loss optical diamagnetism in silver nanoforests,” J. Opt. A 11, 114026 (2009). [CrossRef]
  40. T. G. Mackay, “On the effective permittivity of silver–insulator nanocomposites,” J. Nanophoton. 1, 019501 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited