OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 14 — May. 10, 2012
  • pp: 2767–2771

Dark current and noise analyses of quantum dot infrared photodetectors

Hongmei Liu and Jianqi Zhang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 14, pp. 2767-2771 (2012)
http://dx.doi.org/10.1364/AO.51.002767


View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Because the dark current and the noise of quantum dot infrared photodetectors (QDIPs) can bring about a degradation in their performance, they have attracted more and more attention in recent years. In this paper, an algorithm used to evaluate the dark current of the QDIP is proposed, which is based on the algorithm including the common contribution of the microscale and the nanoscale electron transport. Namely, by accounting for the dependence of the drift velocity on the applied electric field, we greatly enhance the accuracy of the dark current calculation compared with that in the previous algorithm. This proposed algorithm is further used to estimate the noise current of QDIP, and the calculated results show a good agreement with the published data.

© 2012 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Detectors

History
Original Manuscript: January 5, 2012
Revised Manuscript: February 28, 2012
Manuscript Accepted: March 2, 2012
Published: May 10, 2012

Citation
Hongmei Liu and Jianqi Zhang, "Dark current and noise analyses of quantum dot infrared photodetectors," Appl. Opt. 51, 2767-2771 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-14-2767


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17, 23160–23168 (2009). [CrossRef]
  2. H. D. Jahromi, M. H. Sheikhi, and M. H. Yousefi, “Investigation of the quantum dot infrared photodetectors dark current,” Opt. Laser Technol. 43, 1020–1025 (2011). [CrossRef]
  3. P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008). [CrossRef]
  4. V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristic,” Semicond. Sci. Technol. 16, 331–338 (2001). [CrossRef]
  5. T. Asano, A. Madhukar, K. Mahalingam, and G. J. Brown, “Dark current and band profiles in low defect density thick multilayered GaAs/InAs self-assembled quantum dot structures for infrared detectors,” J. Appl. Phys. 104, 113115(2008). [CrossRef]
  6. S. Lin, Y. J. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dots infrared photodetectors,” Appl. Phys. Lett. 83, 752–754 (2003). [CrossRef]
  7. Z. Ye, J. C. Campell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity,” IEEE J. Quantum Electron. 38, 1234–1237 (2002). [CrossRef]
  8. J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots,” Appl. Phys. Lett. 72, 2020–2022 (1998). [CrossRef]
  9. A. D. Stiff-Robert, “Contribution of field-assisted tunneling emission to dark current in InAsGaAs quantum dot infrared photodetectors,” IEEE Photon. Technol. Lett. 16, 867–869 (2004). [CrossRef]
  10. H. C. Liu, “Quantum dot infrared photodetector,” Opto-Electron. Rev. 11, 1–5 (2003).
  11. H. C. Liu, “Quantum well infrared photodetector physics and novel devices,” Semicond. Semimet. 62, 126–196 (2002). [CrossRef]
  12. H. Liu and J. Zhang, “Physical model for the dark current of quantum dot infrared photodetectors,” Opt. Laser Technol. 44, 1536–1542 (2012). [CrossRef]
  13. X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, and A. G. Unil Perera, “A resonant tunneling quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 41, 974–979 (2005). [CrossRef]
  14. H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi, “Gain and recombination dynamics of quantum-dot infrared photodetectors,” Phys. Rev. B 74, 205321 (2006). [CrossRef]
  15. L. Lin, H. L. Zhen, N. Li, W. Lu, Q. C. Weng, D. Y. Xiong, and F. Q. Liu, “Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors,” Appl. Phys. Lett. 97, 193511 (2010). [CrossRef]
  16. P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors,” Bull. Pol. Acad. Sci.: Tech. Sci. 57, 103–116 (2009). [CrossRef]
  17. I. I. Mahmoud, H. S. Konber, and M. S. El Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling,” Opt. Laser Technol. 42, 1240–1249 (2010). [CrossRef]
  18. G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91, 1331–1338 (2002). [CrossRef]
  19. X. Lu and J. Vaillancourt, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007). [CrossRef]
  20. Z. Y. Zhao, C. Yi, K. R. Lantz, and A. D. Stiff-Roberts, “Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy,” Appl. Phys. Lett. 90, 233511 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited