OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2794–2807

Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source

Malay Kumar, Mohammed N. Islam, Fred L. Terry, Jr., Michael J. Freeman, Allan Chan, Manickam Neelakandan, and Tariq Manzur  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 2794-2807 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measure the diffuse reflection spectrum of solid samples such as explosives (TNT, RDX, PETN), fertilizers (ammonium nitrate, urea), and paints (automotive and military grade) at a stand-off distance of 5 m using a mid-infrared supercontinuum light source with 3.9 W average output power. The output spectrum extends from 750–4300 nm, and it is generated by nonlinear spectral broadening in a 9 m long fluoride fiber pumped by high peak power pulses from a dual-stage erbium-ytterbium fiber amplifier operating at 1543 nm. The samples are distinguished using unique spectral signatures that are attributed to the molecular vibrations of the constituents. Signal-to-noise ratio (SNR) calculations demonstrate the feasibility of increasing the stand-off distance from 5 to 150 m , with a corresponding drop in SNR from 28 to 10 dB.

© 2012 Optical Society of America

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:

Original Manuscript: November 7, 2011
Manuscript Accepted: December 19, 2011
Published: May 14, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Malay Kumar, Mohammed N. Islam, Fred L. Terry, Michael J. Freeman, Allan Chan, Manickam Neelakandan, and Tariq Manzur, "Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source," Appl. Opt. 51, 2794-2807 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. P. Fuller, P. R. Griffiths, “Diffuse reflectance measurements by infrared Fourier transform spectroscopy,” Anal. Chem. 50, 1906–1910 (1978). [CrossRef]
  2. I. Schneider, G. Nau, T. V. V. King, I. Aggarwal, “Fiber optic near-infrared reflectance sensor for detection of organics in soils,” IEEE Photon. Technol. Lett. 7, 87–89 (1995). [CrossRef]
  3. M. Leona, J. Winter, “Fiber optics reflectance spectroscopy: a unique tool for the investigation of Japanese paintings,” Studies Conser. 46, 153–162 (2001). [CrossRef]
  4. B. I. Vasil’ev, O. M. Mannoun, “IR differential-absorption LIDARs for ecological monitoring of the environment,” Quantum Electron. 36, 801–820 (2006). [CrossRef]
  5. G. Comanescu, C. K. Manka, J. Grun, S. Nikitin, D. Zabetakis, “Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy,” Appl. Spectrosc. 62, 833–839 (2008). [CrossRef]
  6. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48, B17–B22 (2009). [CrossRef]
  7. A. J. Hobro, B. Lendl, “Stand-off Raman spectroscopy,” Trends Anal. Chem. 28, 1235–1242 (2009). [CrossRef]
  8. J. L. Gottfried, F. C. D. Lucia, C. A. Munson, A. W. Miziolek, “Laser induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges and future prospects,” Anal. Bionanal. Chem. 395, 283–300 (2009). [CrossRef]
  9. V. Swayambunathan, G. Singh, R. C. Sausa, “Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999). [CrossRef]
  10. R. Furstenberg, C. Kendziora, M. Papantonakis, S. V. Stepnowski, J. Stepnowski, V. Nguyen, M. Rake, R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103(2008). [CrossRef]
  11. A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964). [CrossRef]
  12. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006). [CrossRef]
  13. M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. Aleksoff, A. Klooster, D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gains-witched laser diode,” Opt. Express 16, 6194–6201 (2008). [CrossRef]
  14. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769–775 (2005). [CrossRef]
  15. S. V. Ingale, P. U. Sastry, A. K. Patra, R. Tewari, P. B. Wagh, S. C. Gupta, “Micro structural investigations of TNT and PETN incorporated silica xerogels,” J. Sol-Gel Sci. Technol. 54, 238–242 (2010). [CrossRef]
  16. A. Banas, K. Banas, M. Bahou, H. O. Moser, L. Wen, P. Yang, Z. J. Li, M. Cholewa, S. K. Lim, Ch. H. Lim, “Post-blast detection of traces of explosives by means of Fourier transform infrared spectroscopy,” Vibrat. Spectrosc. 51, 168–176 (2009). [CrossRef]
  17. J. Janni, B. D. Gilbert, R. W. Field, J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997). [CrossRef]
  18. G. Anbalagan, S. Mukundakumari, K. S. Murugesan, S. Gunasekaran, “Infrared, optical absorption, and EPR spectroscopc studies on natural gypsum,” Vibrat. Spectrosc. 50, 226–230 (2009). [CrossRef]
  19. T. Poli, O. Chiantore, M. Nervo, A. Piccirillo, “Mid-IR fiber-optic reflectance spectroscopy for identifying the finish on wooden furniture,” Anal. Bioanal. Chem. 400, 1161–1171 (2011). [CrossRef]
  20. C. M. Canal, A. Saleem, R. J. Green, D. A. Hutchins, “Remote identification of chemicals concealed behind clothing using near infrared spectroscopy,” Anal. Meth. 3, 84–91 (2011). [CrossRef]
  21. J. E. Stewart, “Infrared absorption spectra of urea, thiourea, and some thiourea‐alkali halide complexes,” J. Chem. Phys. 26, 248–255 (1957). [CrossRef]
  22. Lawrence Berkeley National Laboratory Pigment Database—Cobalt Chromite Green Spinel, http://coolcolors.lbl.gov/LBNL-Pigment-Database/paints/G05.html .
  23. P. J. Kaste, R. G. Daniel, R. A. Pesce-Rodriguez, M. A. Schroeder, J. A. Escarsega, “Hydrogen plasma removal of military paints: chemical characterization of samples,” Report no. A128453, Army Research Laboratory, Aberdeen Proving Ground, 1998.
  24. F. V. D. Meer, W. Bakker, “CCSM: cross correlogram spectral matching,” Int. J. Remote Sensing 18, 1197–1201 (1997). [CrossRef]
  25. T. H. Demetriades-Shah, M. D. Steven, J. A. Clark, “High resolution derivatives spectra in remote sensing,” Remote Sens. Environ. 33, 55–64, 1990. [CrossRef]
  26. N. B. Gallagher, T. A. Blake, P. L. Gassman, J. M. Shaver, W. Windig, “Multivariate curve resolution applied to infrared reflection measurements of soil contaminated with an organophosphorus analyte,” Appl. Spectrosc. 60, 713–722 (2006). [CrossRef]
  27. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995). [CrossRef]
  28. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009). [CrossRef]
  29. J. T. Rayner, D. W. Toomey, P. M. Onaka, A. J. Denault, W. E. Stahlberger, W. D. Vacca, M. C. Cushing, S. Wang, “A medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility,” Publ. Astron. Soc. Pac. 115, 362–382 (2003). [CrossRef]
  30. S. Wallin, A. Pettersson, H. Ostmark, A. Hobro, “Laser based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009). [CrossRef]
  31. L. A. Averett, P. R. Griffiths, “Mid-infrared diffuse reflection of a strongly absorbing analyte on non-absorbing and absorbing matrices. Part I: Homogeneous powders,” Appl. Spectrosc. 62, 377–382 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited