OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2842–2846

Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 2842-2846 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Attenuated total reflectance Fourier transform infrared spectroscopy is used to monitor the adsorption of 100 nm 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipid vesicles to the surfaces of Ge, electrolessly deposited Au, and a well formed self-assembled monolayer of 1-octadecanethiol. The interaction of DPPC vesicles in solution with these different surfaces yields distinctly different surface structures: intact DPPC vesicles on Ge, a supported phospholipid bilayer on an electrolessly deposited Au surface, and a phospholipid monolayer onto the hydrophobic self-assembled monolayer. IR peak position, bandwidth, and intensity are used to confirm structure formation and quantitation of the amount of lipid that desorbs during film formation.

© 2012 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(160.1435) Materials : Biomaterials

ToC Category:

Original Manuscript: January 27, 2012
Revised Manuscript: February 15, 2012
Manuscript Accepted: March 2, 2012
Published: May 15, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land, "Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures," Appl. Opt. 51, 2842-2846 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Ataka and J. Heberle, “Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer,” in Papers from the 11th European Conference on the Spectroscopy of Biological Molecules (Wiley, 2006), pp. 415–419.
  2. N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, “Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates,” Nat. Protoc. 5, 1096–1106 (2010). [CrossRef]
  3. C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, “Formation of supported membranes from vesicles,” Phys. Rev. Lett. 84, 5443–5446 (2000). [CrossRef]
  4. A. Blume, “Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies,” Curr. Opin. Colloid Interface Sci. 1, 64–77 (1996). [CrossRef]
  5. L. Q. Zhang, M. L. Longo, and P. Stroeve, “Mobile phospholipid bilayers on a polyion/alkylthiol layer pair,” Langmuir 16, 5093–5099 (2000). [CrossRef]
  6. R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J. 85, 3035–3047 (2003). [CrossRef]
  7. H. Jung, J. Kim, J. Park, S. Lee, H. Lee, R. Kuboi, and T. Kawai, “Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface,” J. Biosci. Bioeng. 102, 28–33 (2006). [CrossRef]
  8. J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir 21, 2218–2228 (2005). [CrossRef]
  9. E. Kalb, S. Frey, and L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992). [CrossRef]
  10. C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophys. J. 75, 1397–1402 (1998). [CrossRef]
  11. E. Reimhult, M. Zach, F. Hook, and B. Kasemo, “A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2,” Langmuir 22, 3313–3319 (2006). [CrossRef]
  12. S. Trepout, S. Mornet, H. Benabdelhak, A. Ducruix, A. R. Brisson, and O. Lambert, “Membrane protein selectively oriented on solid support and reconstituted into a lipid membrane,” Langmuir 23, 2647–2654 (2007). [CrossRef]
  13. I. Pfeiffer, S. Petronis, I. Koper, B. Kasemo, and M. Zach, “Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces,” J. Phys. Chem. B 114, 4623–4631 (2010). [CrossRef]
  14. A. R. Hind, S. K. Bhargava, and A. McKinnon, “At the solid/liquid interface: FTIR/ATR—the tool of choice,” Adv. Colloid Interface Sci. 93, 91–114 (2001). [CrossRef]
  15. Y. Er, C. A. Prestidge, and D. Fronasiero, “Attenuated total reflectance infrared studies of liposome adsorption at the solid–liquid interface,” Colloids Surf. B 36, 147–153 (2004). [CrossRef]
  16. P. R. Brejna, P. R. Griffiths, and J. Yang, “Nanostructural silver and gold substrates for surface-enhanced Raman spectroscopy measurements prepared by galvanic displacement on germanium disks,” Appl. Spectrosc. 63, 396–400 (2009). [CrossRef]
  17. A. N. Parikh, J. D. Beers, A. P. Shreve, and B. I. Swanson, “Infrared spectroscopic characterization of lipid-alkylsiloxane hybrid bilayer membranes at oxide substrates,” Langmuir 15, 5369–5381 (1999). [CrossRef]
  18. C. Chen and C. P. Tripp, “An infrared spectroscopic based method to measure membrane permeance in liposomes,” Biochim. Biophys. Acta 1778, 2266–2272 (2008). [CrossRef]
  19. M. Sundh, S. Svedhem, and D. S. Sutherland, “Influence of phase separating lipids on supported lipid bilayer formation at SiO(2) surfaces,” Phys. Chem. Chem. Phys. 12, 453–460 (2010). [CrossRef]
  20. C. H. Jiang, A. Gamarnik, and C. P. Tripp, “Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands,” J. Phys. Chem. B 109, 4539–4544 (2005). [CrossRef]
  21. H. L. Casal and H. H. Mantsch, “Polymorphic phase-behavior of phospholipid-membranes studied by infrared-spectroscopy,” Biochim. Biophys. Acta 779, 381–401 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited