OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2847–2855

Shift-multiplexed microhologram fabrication with photoisomeric chromophores

Yuta Shiga and Chikara Egami  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 2847-2855 (2012)
http://dx.doi.org/10.1364/AO.51.002847


View Full Text Article

Enhanced HTML    Acrobat PDF (956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microholographic memory is an attractive storage system for its capability to hold high-density data and for its access time. Using a photochromic chromophore (diarylethene)-doped recording medium can give rise to microholographic memory’s durability and contrast. In addition, it is possible to increase the microholographic memory’s density by shift-multiplexed recording, since a hologram pit is constructed in a small area. The microhologram was fabricated in the diarylethene-based sample with two counterpropagating focused beams. Also, surface images and cross-sectional images scanned by a confocal microscope indicated that shift-multiplexed recording was achieved in high contrast.

© 2012 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.2900) Materials : Optical storage materials
(160.4670) Materials : Optical materials
(160.4890) Materials : Organic materials

ToC Category:
Materials

History
Original Manuscript: November 9, 2011
Revised Manuscript: January 19, 2012
Manuscript Accepted: January 20, 2012
Published: May 15, 2012

Citation
Yuta Shiga and Chikara Egami, "Shift-multiplexed microhologram fabrication with photoisomeric chromophores," Appl. Opt. 51, 2847-2855 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-2847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Yang and M. R. Wang, “White light micrograting multiplexing for high density data storage,” Opt. Lett. 31, 1304–1306 (2006). [CrossRef]
  2. B. Das, J. Joseph, and K. Singh, “Material saturation in photopolymer holographic data recording and its effects on bit-error-rate and content-addressable search,” Opt. Commun. 282, 177–184 (2009). [CrossRef]
  3. F. Gauttari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007). [CrossRef]
  4. I. S. Steinberg, V. A. Loskutov, V. V. Shelkovnikov, and Y. A. Shepetkin, “Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators,” Opt. Commun. 281, 4297–4301 (2008). [CrossRef]
  5. Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007). [CrossRef]
  6. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006). [CrossRef]
  7. S. Orlic, E. Dietz, S. Frohmann, and J. Rass, “Resolution-limited optical recording in 3D,” Opt. Express 19, 16096–16105 (2011). [CrossRef]
  8. B. Gombkötő, Z. Nagy, P. Koppa, and E. Lőrincz, “Modeling high density microholographic data storage: using linear, quadratic, thresholding and hard clipping material characteristics,” Opt. Commun. 281, 4261–4267 (2008). [CrossRef]
  9. J. Mysliwiec, M. Ziemienczuk, and A. Miniewicz, “Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules,” Opt. Mater. 33, 1382–1386 (2011). [CrossRef]
  10. N. Kawatsuki, A. Tashima, S. Manabe, M. Kondo, M. Okada, S. Matsui, A. Emoto, and H. Ono, “Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325 nm laser with various polarizations,” React. Funct. Polym. 70, 980–985 (2010). [CrossRef]
  11. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000). [CrossRef]
  12. N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng. B 138, 210–213 (2007). [CrossRef]
  13. C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol. C 12, 106–125 (2011). [CrossRef]
  14. S. Yokojima, K. Ryuo, M. Tachikawa, T. Kobayashi, K. Kanda, S. Nakamura, T. Ebisuzaki, T. Fukaminato, and M. Irie, “Conformational dependence of energy transfer rate between photochromic molecule and fluorescent dye,” Phys. E 40, 301–305 (2007). [CrossRef]
  15. C. Egami and Y. Liu, “Laser fabrication of high-aspect-ratio holes and grooves in photoresist by time constant manipulation,” Opt. Commun. 280, 188–191 (2007). [CrossRef]
  16. W. J. Tomlinson, “Dynamics of photochromic conversion in optically thick samples: theory,” Appl. Opt. 15, 821–826(1976). [CrossRef]
  17. W. J. Tomlinson, “Analyses of bit-oriented optical memories using photochromic media,” Appl. Opt. 23, 3990–3993(1984). [CrossRef]
  18. T. Tsujioka, M. Kume, and M. Irie, “Photochromic reactions of a diarylethene derivative in polymer matrices,” J. Photochem. Photobiol. A 104, 203–206 (1997). [CrossRef]
  19. T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution optical memory using saturable absorption dye,” Opt. Rev. 2, 225–228 (1995). [CrossRef]
  20. T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, and M. Irie, “Photochromism of diarylethene single molecules in polymer matrices,” J. Am. Chem. Soc. 129, 5932–5938 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited