OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2909–2916

Tuned switching of surface waves by a liquid crystal cap layer in one-dimensional photonic crystals

Hodjat Hajian, Behrooz Rezaei, Ali Soltani Vala, and Manoochehr Kalafi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 2909-2916 (2012)
http://dx.doi.org/10.1364/AO.51.002909


View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we theoretically study the electromagnetic surface waves localized at the interface between a homogeneous dielectric medium and a semi-infinite, one-dimensional photonic crystal (1D PC). The semi-infinite 1D PC is made of alternative layers of right-handed (RH) and dispersive left-handed (LH) materials in the presence of a liquid crystal (LC) cap layer. In this structure, we derive the surface waves dispersion relation with tunable switching and localization by using an analytical direct matching procedure within the Kronig–Penny model. It is shown that, for both of layer arrangements, the variation of molecules orientation of the LC cap layer acts as an effective tool to tune the type (tuned switching) and localization of the surface waves and it also can create a surface mode with maximum localization in the first frequency bandgap.

© 2012 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: October 24, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 18, 2012
Published: May 16, 2012

Citation
Hodjat Hajian, Behrooz Rezaei, Ali Soltani Vala, and Manoochehr Kalafi, "Tuned switching of surface waves by a liquid crystal cap layer in one-dimensional photonic crystals," Appl. Opt. 51, 2909-2916 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-2909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneous negative value of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. R. A. Shelby, D. R. Smith, D. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001). [CrossRef]
  3. D. R. Smith, W. J. Padilla, D. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  4. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef]
  5. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Mid-infrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005). [CrossRef]
  6. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  7. N. Engheta, “An idea for thin sub-wavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propagat. Lett. 1, 10–13 (2002).
  8. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, 2006).
  9. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450, 397–401 (2007). [CrossRef]
  10. R. Marques, F. Martin, and Mosorolla, Metamaterials with Negative Parameters (Wiley, 2008).
  11. D. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett. 95, 084102 (2009). [CrossRef]
  12. S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). [CrossRef]
  13. M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. S. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009). [CrossRef]
  14. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010). [CrossRef]
  15. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010). [CrossRef]
  16. F. Villa-Villa and G. A. Gasper-Armenta, “Brewster angle and optical tunneling in one-dimensional photonic crystals composed of left- and right-handed materials,” J. Opt. Soc. Am. B 23, 375–380 (2006). [CrossRef]
  17. A. Mendoza-Suarez, F. Villa-Villa, and G. A. Gasper-Armenta, “Band structure of two dimensional photonic crystals that include dispersive left-handed materials and dielectrics in the unit cells,” J. Opt. Soc. Am. B 24, 3091–3098 (2007). [CrossRef]
  18. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef]
  19. D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. P. Vigneron, E. H. El Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004). [CrossRef]
  20. R. A. Depine, M. L. Martinez-Ricci, J. A. Monsoriu, E. Silvestre, and P. Andres, “Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystal,” Phys. Lett. A 364, 352–355 (2007). [CrossRef]
  21. G. Bordin, M. Marklund, L. Stenflo, and P. K. Shukla, “Anomalous reflection and excitation of surface waves in metamaterials,” Phys. Lett. A 367, 233–236 (2007). [CrossRef]
  22. D. V. Kulagin, A. S. Savchenko, and S. V. Tarasenko, “Polariton dynamics of a one-dimensional gyrotropic magnetic photonic crystal in a dc electric field: II. Surface waves,” Opt. Spectrosc. 107, 803–810 (2009). [CrossRef]
  23. C. Vandenbem, “Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes,” Opt. Lett. 33, 2260–2262 (2008). [CrossRef]
  24. J. Martoller, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006). [CrossRef]
  25. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterials and metal-dielectric superlatices,” Appl. Phys. Lett. 95, 041902 (2009). [CrossRef]
  26. A. I. Rahachou and I. V. Zozoulenko, “Waveguiding properties of surface states in photonic crystals,” J. Opt. Soc. Am. B 23, 1679–1683 (2006). [CrossRef]
  27. X. Qi, I. L. Garanovich, Z. Xu, A. A. Sukhorukov, W. Krolikowski, A. Mitchell, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Observation of nonlinear surface waves in modulated waveguide arrays,” Opt. Lett. 34, 2751–2753 (2009). [CrossRef]
  28. A. R. Davoyan, I. V. Shadrivov, S. I. Bozhevolnyi, and Y. S. Kivshar, “Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides,” J. Nanophoton. 4, 043509 (2010). [CrossRef]
  29. S. Feng, H.-Y. Sang, Z.-Y. Li, B.-Y. Cheng, and D.-Z. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A: Pure Appl. Opt. 7, 374–381 (2005). [CrossRef]
  30. Y. El Hassouani, E. H. El Boudouti, H. Aynaou, B. Djafari-Rouhani, and V. R. Velasco, “Comment on Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A: Pure Appl. Opt. 9, 308–313 (2007). [CrossRef]
  31. A. Namdar, I. Shadrivov, and Y. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006). [CrossRef]
  32. I. Shadrivov, A. Sukhorukov, and Y. Kivshar, “Nonlinear surface waves in left-handed metamaterials,” Phys. Rev. E 69, 016617 (2004). [CrossRef]
  33. J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed metamaterials,” Phys. Rev. A 77, 013805 (2008). [CrossRef]
  34. T. B. Wang, C. P. Yin, W. Y. Liang, J. W. Dong, and H. Z. Wang, “Electromagnetic surface modes in one-dimensional photonic crystals with dispersive metamaterials,” J. Opt. Soc. Am. B 26, 1635–1640 (2009). [CrossRef]
  35. H. Hajian, A. Soltani-Vala, and M. Kalafi, “Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer,” Opt. Commun. 283, 4847–4854 (2010). [CrossRef]
  36. M. Steslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localized electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93–196 (2002). [CrossRef]
  37. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  38. I. C. Khoo, Liquid Crystals (Wiley, 2007).
  39. B. Rezaei and M. Kalafi, “Tunable full band gap in two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 282, 1584–1588 (2009). [CrossRef]
  40. M. de Dios-Leyva and J. A. Leyva-Galano, “Influence of absorption on the zero-n¯ gap in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 78, 115106 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited