OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2917–2924

Optimized half-wave voltage and insertion loss in a strip-loaded waveguide electro-optic polymer modulator

Antonio A. Davis, Perry P. Yaney, and James G. Grote  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 2917-2924 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A strip-loaded waveguide, electro-optic modulator was designed and analyzed in terms of single mode conditions, optical loss due to the metal electrodes, modulation efficiency, and mode size. Two designs were compared: Design 1 optimized the half-wave voltage (Vπ=1.1V) with a nearly symmetric waveguide by maximizing modulation efficiency and minimizing the overall thickness of the waveguide; Design 2 optimized the insertion loss by reducing coupling loss by 4.6 dB via a strongly asymmetric waveguide that maximizes the overall mode size to most efficiently overlap with a single mode fiber. Design 2 also has a favorable half-wave voltage (Vπ=1.75V). Some general guidelines in the selection of cladding layers in a detailed design of a poled-polymer electro-optic modulator incorporating a strip-loaded waveguide structure are suggested.

© 2012 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.7370) Optical devices : Waveguides
(250.5460) Optoelectronics : Polymer waveguides
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Optical Devices

Original Manuscript: January 20, 2012
Revised Manuscript: March 9, 2012
Manuscript Accepted: March 11, 2012
Published: May 16, 2012

Antonio A. Davis, Perry P. Yaney, and James G. Grote, "Optimized half-wave voltage and insertion loss in a strip-loaded waveguide electro-optic polymer modulator," Appl. Opt. 51, 2917-2924 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Chen, H. R. Fetterman, W. H. Steier, L. R. Dalton, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997). [CrossRef]
  2. M. Lee, H. Katz, C. Erben, D. Gill, P. Gopalan, J. Heber, and D. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002). [CrossRef]
  3. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007). [CrossRef]
  4. Y. Shi, W. Lin, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000). [CrossRef]
  5. C. Pollock, Fundamentals of Optoelectronics (Irwin, 1994), Chaps. 2 and 8.
  6. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
  7. R. G. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer, 1995), Chap. 3.
  8. H. Furuta, H. Noda, and A. Ihaya, “Novel optical waveguide for integrated optics,” Appl. Opt. 13, 322–326 (1974). [CrossRef]
  9. V. Ramaswamy, “Strip loaded film waveguide,” Bell Syst. Tech. J. 53, 697–705 (1974).
  10. E. A. J. Marcatili, “Slab-coupled waveguides,” Bell Syst. Tech. J. 53, 645–674 (1974).
  11. A. J. Moses, Handbook of Electronic Materials Vol. 1: Optical Material Properties (IFI/Plemum, 1971), pp. 36–37.
  12. C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge, 1996).
  13. W. K. Burns and G. B. Hocker, “End fire coupling between optical fibers and diffused channel waveguides,” Appl. Opt. 16, 2048–2050 (1977). [CrossRef]
  14. L. G. Cohen, “Power coupling from GaAs injection lasers into optical fibers,” Bell Syst. Tech. J. 51, 573–594 (1972).
  15. D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974), Chap. 1.
  16. D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695–1702 (1970).
  17. S. K. Kim, K. Geary, D. H. Chang, H. R. Fetterman, and W. H. Steier, “TM-pass polymer modulators with poling-induced waveguides and self-aligned electrodes,” Electron. Lett. 39, 721–722 (2003). [CrossRef]
  18. M.-C. Oh, H. Zhang, A. Szep, C. Zhang, H. Erlig, and H. R. Fetterman, “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Appl. Phys. Lett. 76, 3525–3527 (2000). [CrossRef]
  19. H. Zhang, M.-C. Oh, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, D. H. Chang, and H. R. Fetterman, “Push-pull electro-optic polymer modulators with low half-wave voltage and low loss at 1310 and 1550 nm,” Appl. Phys. Lett. 78, 3136–3138 (2001). [CrossRef]
  20. Master Bond Inc., 154 Hobart Street, Hackensack, NJ 07601, 201-343-8983, http://www.masterbond.com .
  21. E. Heckman, J. Hagen, P. Yaney, J. Grote, and F. Hopkins, “Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications,” App. Phys. Lett. 87, 211115 (2005). [CrossRef]
  22. J. Grote, N. Ogata, D. Diggs, and F. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003). [CrossRef]
  23. Sigma-Aldrich Corporation, P.O. Box 14508, St. Louis, MO 63178, USA, 1-800-325-3010, http://www.sigmaaldrich.com .
  24. P. Yaney, E. Heckman, A. Davis, J. Hagen, C. Bartsch, G. Subramanyam, J. Grote, and F. Hopkins, “Characterization of NLO polymer materials for optical waveguide structures,” Proc. SPIE 6117, 61170W (2006). [CrossRef]
  25. R. Norwood, R. Gao, J. Sharma, and C. C. Teng, “Sources of loss in single-mode polymer optical waveguides,” Proc. SPIE 4439, 19–28 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited