OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2925–2934

Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light

Enrique J. Galvez, Shreeya Khadka, William H. Schubert, and Sean Nomoto  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 2925-2934 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a study of Poincaré-beam polarization patterns produced by collinear superposition of two Laguerre–Gauss spatial modes in orthogonal polarization eigenstates (circular or linear). We explore theoretically and experimentally the combinations that are possible. We find that the resulting patterns can be explained in terms of mappings of points on the Poincaré sphere onto points in the transverse plane of the beam mode. The modes that we produced yielded many types of polarization singularities.

© 2012 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: January 3, 2012
Revised Manuscript: February 20, 2012
Manuscript Accepted: February 24, 2012
Published: May 16, 2012

Enrique J. Galvez, Shreeya Khadka, William H. Schubert, and Sean Nomoto, "Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light," Appl. Opt. 51, 2925-2934 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Mushiake, K. Matsumura, and N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972). [CrossRef]
  2. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef]
  3. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef]
  4. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal and radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000). [CrossRef]
  5. K. S. Youngsworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef]
  6. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  7. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010). [CrossRef]
  8. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  9. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007). [CrossRef]
  10. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystals polymers,” Opt. Express 16, 7295–7308 (2008). [CrossRef]
  11. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002). [CrossRef]
  12. T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystal,” Opt. Express 18, 10848–10863 (2010). [CrossRef]
  13. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237, 89–95 (2004). [CrossRef]
  14. G. Milione, H. I. Sztul, R. R. Alfano, and D. A. Nolan, “Stokes polarimetry of a hybrid vector beam from a spun elliptical core optical fiber,” Proc. SPIE 7613, 761305 (2009).
  15. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009). [CrossRef]
  16. J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983). [CrossRef]
  17. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005). [CrossRef]
  18. J. F. Nye, “Line singularities in wave fields,” Proc. R. Soc. A 387, 105–132 (1983). [CrossRef]
  19. J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. A 389, 279–290 (1983). [CrossRef]
  20. J. F. Nye, Natural Focusing and Fine Structure of Light (IOP, 1999).
  21. M. V. Berry and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. A 457, 141–155 (2001). [CrossRef]
  22. M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1475–1477 (2003). [CrossRef]
  23. F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005). [CrossRef]
  24. R. I. Egorov, M. S. Soskin, D. A. Kessler, and I. Freund, “Experimental measurements of topological singularity screening in random paraxial scalar and vector optical fields,” Phys. Rev. Lett. 100, 103901 (2008). [CrossRef]
  25. F. Flossmann, K. O’Holleran, M. R. Dennis, and M. J. Padgett, “Polarization singularities in 2D and 3D speckle fields,” Phys. Rev. Lett. 100, 203902 (2008). [CrossRef]
  26. M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009). [CrossRef]
  27. I. O. Buinyi, V. G. Denisenko, and M. S. Soskin, “Topological structure in polarization resolved conoscopic patterns for nematic liquid crystal cells,” Opt. Commun. 282, 143–155 (2009). [CrossRef]
  28. Y. V. Jayasurya, V. V. G. Krishna Inavalli, and N. K. Viswanathan, “Polarization singularities in the two-mode optical fiber output,” Appl. Opt. 50, E131–E137 (2011). [CrossRef]
  29. I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251–270 (2002). [CrossRef]
  30. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  31. E. J. Galvez and S. Khadka, “Poincaré modes of light,” Proc. SPIE 8274, 83740Y (2012).
  32. I. Freund, “Polarization flowers,” Opt. Commun. 199, 47–63 (2001). [CrossRef]
  33. E. J. Galvez, “Vector beams in free space,” in The Angular Momentum of Light, D. L. Andrews and M. Babiker, eds. (Cambridge, to be published).
  34. E. J. Galvez, N. Smiley, and N. Fernandes, “Composite optical vortices formed by collinear Laguerre–Gauss beams,” Proc. SPIE 6131, 613105 (2006).
  35. S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez, “Propagation dynamics of optical vortices due to Gouy phase,” Opt. Express 17, 9818–9827 (2009). [CrossRef]
  36. I. Freund, “Poincaré vortices,” Opt. Lett. 26, 1996–1998 (2001). [CrossRef]
  37. I. Freund, A. I. Mokhum, M. S. Soskin, O. V. Angelsky, and I. I. Mokhum, “Stokes singularity relations,” Opt. Lett. 27, 545–547 (2002). [CrossRef]
  38. I. Freund, M. S. Soskin, and A. I. Mokhum, “Elliptic critical points in paraxial optical fields,” Opt. Commun. 208, 223–253 (2002). [CrossRef]
  39. I. Freund, “Möbius strips and twisted ribbons in intersecting Gauss–Laguerre beams,” Opt. Commun. 284, 3816–3845 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited