OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2941–2950

Phase control requirements of high intensity laser beam combining

Yan-Qi Gao, Wei-xin Ma, Bao-Qiang Zhu, Dai-zhong Liu, Zhao-dong Cao, Jian Zhu, and Ya-ping Dai  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 2941-2950 (2012)
http://dx.doi.org/10.1364/AO.51.002941


View Full Text Article

Enhanced HTML    Acrobat PDF (1607 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Aiming at getting the general requirements of the beam combine for ignition scale laser facilities, the analytical expressions including the factors affecting the combine results are derived. The physical meanings of every part are illustrated. Based on these expressions, the effects of the factors, including the beam configuration, piston error, and tip/tilt error, are studied analytically and numerically. The results show that the beam configuration cannot affect the Strehl ratio (SR) of the combined beam, but it influences the FWHM of the main peak and the ratio of the main peak and the side peak. The beam separation should be no more than 1.24 times the individual beam width for the multibeam combine, and be close to the individual beam width for the two-beam combine as much as possible. The piston error can change the characteristics of the combine beam focus, including the peak intensity, the focal spot morphology, the fractional energy contained within a certain area, and the center of mass. For the two-beam combine, a piston error less than 2π/5rad is suitable, and for the multibeam combine, the standard deviation of the piston error should be no more than 2π/10rad. The tip/tilt error has a great influence on the combined results. It affects the superposition degree of the focal spots of the combined elements directly. A requirement of 0.51μrad for the standard deviation of the tip/tilt error is adequate.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(140.3290) Lasers and laser optics : Laser arrays
(140.3460) Lasers and laser optics : Lasers
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 13, 2011
Revised Manuscript: March 19, 2012
Manuscript Accepted: March 19, 2012
Published: May 16, 2012

Citation
Yan-Qi Gao, Wei-xin Ma, Bao-Qiang Zhu, Dai-zhong Liu, Zhao-dong Cao, Jian Zhu, and Ya-ping Dai, "Phase control requirements of high intensity laser beam combining," Appl. Opt. 51, 2941-2950 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-2941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tabak, D. S. Clark, S. P. Hatchett, M. H. Key, B. F. Lasinski, R. A. Snavely, S. C. Wilks, R. P. J. Town, R. Stephens, E. M. Campbell, R. Kodama, K. Mima, K. A. Tanaka, S. Atzeni, and R. Freeman, “Review of progress in fast ignition,” Phys. Plasmas 12, 057305 (2005). [CrossRef]
  2. J. D. Zuegel, S. Borneis, C. Barty, B. Legarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. Leblanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).
  3. M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436–439 (2001). [CrossRef]
  4. Michael Schirber, “For nuclear fusion, could two lasers be better than one?” Science 310, 1610–1611 (2005). [CrossRef]
  5. M. H. Key, “Status of and prospects for the fast ignition inertial fusion concept,” Phys. Plasmas 14, 055502 (2007). [CrossRef]
  6. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2, 2–5 (2006). [CrossRef]
  7. H. T. Nguyen, J. A. Britten, T. C. Carlson, J. D. Nissen, L. J. Summers, C. R. Hoaglan, M. D. Aasen, J. E. Peterson, and I. Jovanovic, “Gratings for high-energy petawatt lasers,” Proc. SPIE 5991, 59911M (2005). [CrossRef]
  8. J. A. Britten, H. T. Nguyen, L. M. Jones, T. C. Carlson, C. R. Hoaglan, L. J. Summers, M. D. Aasen, A. Rigatti, and J. Oliver, “First demonstration of a meter-scale multilayer dielectric reflection grating for high-energy petawatt-class lasers,” Lawrence Livermore National Laboratory, UCRL-JRNL-205887 (2004).
  9. T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, “Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers,” Opt. Lett. 29, 635–637 (2004). [CrossRef]
  10. J. Qiao, A. Kalb, T. Nguyen, J. Bunkenburg, D. Canning, and J. H. Kelly, “Demonstration of large-aperture tiled-grating compressors for high-energy, petawatt-class, chirped-pulse amplification systems,” Opt. Lett. 33, 1684–1686 (2008). [CrossRef]
  11. H. Habara, G. Xu, T. Jitsuno, R. Kodama, K. Suzuki, K. Sawai, K. Kondo, N. Miyanaga, K. A. Tanaka, K. Mima, M. C. Rushford, J. A. Britten, and C. P. J. Barty, “Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system,” Opt. Lett. 35, 1783–1785 (2010). [CrossRef]
  12. J. Qiao, A. Kalb, M. J. Guardalben, G. King, D. Canning, and J. H. Kelly, “Large-aperture grating tiling by interferometry for petawatt chirped-pulse—amplification systems,” Opt. Express 15, 9562–9574 (2007). [CrossRef]
  13. M. Hornung, R. Bödefeld, A. Kessler, J. Hein, and M. C. Kaluza, “Spectrally resolved and phase-sensitive far-field measurement for the coherent addition of laser pulses in a tiled grating compressor,” Opt. Lett. 35, 2073–2075 (2010). [CrossRef]
  14. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005). [CrossRef]
  15. L. Daniault, M. Hanna, D. N. Papadopoulos, Y. Zaouter, E. Mottay, F. Druon, and P. Georges, “Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers,” Opt. Lett. 36, 4023–4025 (2011). [CrossRef]
  16. S. M. Redmond, K. J. Creedon, J. E. Kansky, S. J. Augst, L. J. Missaggia, M. K. Connors, R. K. Huang, B. Chann, T. Y. Fan, G. W. Turner, and A. Sanchez-Rubio, “Active coherent beam combining of diode lasers,” Opt. Lett. 36, 999–1001 (2011). [CrossRef]
  17. T. Weyrauch, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, A. P. Rostov, E. E. Polnau, and J. J. Liu, “Experimental demonstration of coherent beam combining over a 7 km propagation path,” Opt. Lett. 36, 4455–4457 (2011). [CrossRef]
  18. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31, 1247–1249 (2006). [CrossRef]
  19. Y. Zheng, X. Wang, L. Deng, F. Shen, and X. Li, “Arbitrary phasing technique for two-dimensional coherent laser array based on an active segmented mirror,” Appl. Opt. 50, 2239–2245 (2011). [CrossRef]
  20. M. H. Key, “Status of and prospects for the fast ignition inertial fusion concept,” Phys. Plasmas 14, 055502 (2007). [CrossRef]
  21. C. P. J. Barty, M. H. Key, J. Britten, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird, T. Carlson, J. Crane, J. Dawson, A. C. Erlandson, D. Fittinghoff, M. Hermann, C. Hoaglan, A. Iyer, L. Jones, I. Jovanovic, A. Komashko, O. Landen, Z. Liao, W. Molander, S. Mitchell, E. Moses, N. Nielsen, H-H. Nguyen, J. Nissen, S. Payne, D. Pennington, L. Risinger, M. Rushford, K. Skulina, M. Spaeth, B. Stuart, G. Tietbohl, and B. Wattellier, “An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments,” Nucl. Fusion 44, S266 (2004). [CrossRef]
  22. K. L. Baker, “Interferometric adaptive optics for high-power laser pointing and wavefront control and phasing,” J. Micro-Nanolith. Mem. 8, 033040 (2009). [CrossRef]
  23. K. L. Baker, D. Homoelle, E. Utterback, and S. M. Jones, “Phasing rectangular apertures,” Opt. Express 17, 19551–19565 (2009). [CrossRef]
  24. K. L. Baker, D. Homoelle, E. Utternback, E. A. Stappaerts, C. W. Siders, and C. P. J. Barty, “Interferometric adaptive optics testbed for laser pointing, wave-front control and phasing,” Opt. Express 17, 16696–16709 (2009). [CrossRef]
  25. D. Homoelle, J. K. Crane, M. Shverdin, C. L. Haefner, and C. W. Siders, “Phasing beams with different dispersions and application to the petawatt-class beamline at the National Ignition Facility,” Appl. Opt. 50, 554–561 (2011). [CrossRef]
  26. N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coïc, C. Damiens-Dupont, J. Ebrardt, O. Flour, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Néauport, D. Raffestin, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-Petawatt project on the LIL facility,” Plasma Phys. Contr. F. 50, 124045 (2008). [CrossRef]
  27. N. Blanchot, G. Marre, J. Néauport, E. Sibé, C. Rouyer, S. Montant, A. Cotel, C. Le Blanc, and C. Sauteret, “Synthetic aperture compression scheme for a multipetawatt high-energy laser,” Appl. Opt. 45, 6013–6021 (2006). [CrossRef]
  28. N. Blanchot, E. Bar, G. Behar, C. Bellet, D. Bigourd, F. Boubault, C. Chappuis, H. Coïc, C. Damiens-Dupont, O. Flour, O. Hartmann, L. Hilsz, E. Hugonnot, E. Lavastre, J. Luce, E. Mazataud, J. Neauport, S. Noailles, B. Remy, F. Sautarel, M. Sautet, and C. Rouyer, “Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers,” Opt. Express 18, 10088–10097(2010). [CrossRef]
  29. S. Mousset, C. Rouyer, G. Marre, N. Blanchot, S. Montant, and B. Wattellier, “Piston measurement by quadriwave lateral shearing interferometry,” Opt. Lett. 31, 2634–2636 (2006). [CrossRef]
  30. C. Rouyer, N. Blanchot, J. Neauport, and C. Sauteret, “Delay interferometric single shot measurement of a petawatt-class laser longitudinal chromatism corrector,” Opt. Express 15, 2019–2032 (2007). [CrossRef]
  31. J. Néauport, N. Blanchot, C. Rouyer, and C. Sauteret, “Chromatism compensation of the PETAL multipetawatt high-energy laser,” Appl. Opt. 46, 1568–1574 (2007). [CrossRef]
  32. Y. Izawa, “Overview of FIREX Program,” in Proceedings of 5th US-Japan Workshop on Laser IFE (2005).
  33. M. Dunne, N. Alexander, and F. Amiranoff, et al., “Technical Background and Conceptual Design Report 2007,” http://www.hiper-laser.org/overview/tdr/tdr.asp .
  34. The ELI-Nuclear Physics working groups, “The White Book of ELI Nuclear Physics,” http://www.eli-np.ro/documents/ELI-NP-WhiteBook.pdf .
  35. J. W. Goodman, Introduction to Fourier Optics, 3rd Ed.(Roberts, 2005).
  36. C. D. Nabors, “Effects of phase errors on coherent emitter arrays,” Appl. Opt. 33, 2284–2289 (1994). [CrossRef]
  37. G. Chanan, C. Ohara, and M. Troy, “Phasing the mirror segments of the Keck Telescopes II: The narrow-band phasing algorithm,” Appl. Opt. 39, 4706–4714 (2000). [CrossRef]
  38. N. Yaitskova, K. Dohlen, and P. Dierickx, “Analytical study of diffraction effects in extremely large segmented telescopes,” J. Opt. Soc. Am. A 20, 1563–1575 (2003). [CrossRef]
  39. G. Chanan and M. Troy, “Strehl ratio and modulation transfer function for segmented mirror telescopes as functions of segment phase error,” Appl. Opt. 38, 6642–6647 (1999). [CrossRef]
  40. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007). [CrossRef]
  41. S. C. Burkhart, E. Bliss, P. Di Nicola, D. Kalantar, R. Lowe-Webb, T. McCarville, D. Nelson, T. Salmon, T. Schindler, J. Villanueva, and K. Wilhelmsen, “National Ignition Facility system alignment,” Appl. Opt. 50, 1136–1157 (2011). [CrossRef]
  42. Y.-Q. Gao, B.-Q. Zhu, D.-Z. Liu, X.-F. Liu, and Z.-Q. Lin, “Characteristics of beam alignment in a high power four-pass laser amplifier,” Appl. Opt. 48, 1591–1597 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited