OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2958–2967

High-precision three-dimensional shape reconstruction via digital refocusing in multi-wavelength digital holography

Li Xu, Carl C. Aleksoff, and Jun Ni  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 2958-2967 (2012)
http://dx.doi.org/10.1364/AO.51.002958


View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional (3D) shape reconstructions and metrology measurements are often limited by depth-of-field constraints. Current focus-detection-based techniques are insufficient to profile out-of-focus 3D objects with high axial accuracy. Extended-focus imaging (EFI) techniques can improve the range and precision of such measurements. By incorporating digital refocusing with multiwavelength interferometry, a holographic imaging solution is presented in this paper to accurately measure 3D objects over a large depth range. Accuracy and repeatability of the proposed EFI technique are validated by digital simulations and refocusing experiments. A reconstruction example demonstrates the feasibility of high-precision 3D measurements of objects deeper than the system’s classical depth of field.

© 2012 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: September 23, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 15, 2011
Published: May 18, 2012

Citation
Li Xu, Carl C. Aleksoff, and Jun Ni, "High-precision three-dimensional shape reconstruction via digital refocusing in multi-wavelength digital holography," Appl. Opt. 51, 2958-2967 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-2958


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005). [CrossRef]
  2. M. L. Tachiki, M. Itoh, and T. Yatagai, “Simultaneous depth determination of multiple objects by focus analysis in digital holography,” Appl. Opt. 47, D144–D153 (2008). [CrossRef]
  3. J. Gillespie and R. A. King, “The use of self-entropy as a focus measure in digital holography,” Patt. Recogn. Lett. 9, 19–25 (1989). [CrossRef]
  4. L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. Soc. Am. A 6, 396–400 (2004). [CrossRef]
  5. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008). [CrossRef]
  6. Y. J. Choo and B. S. Kang, “The characteristics of the particle position along an optical axis in particle holography,” Meas. Sci. Technol. 17, 761–770 (2006). [CrossRef]
  7. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840–1842 (2010). [CrossRef]
  8. S. K. Nayar and Y. Nakagawa, “Shape from focus,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 824–831 (1994). [CrossRef]
  9. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003). [CrossRef]
  10. Y. Zou, G. Pedrini, and H. Tiziani, “Surface contouring in a video frame by changing the wavelength of a diode laser,” Opt. Eng. 35, 1074–1079 (1996). [CrossRef]
  11. J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007). [CrossRef]
  12. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010). [CrossRef]
  13. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008). [CrossRef]
  14. J. Kandulla, B. Kemper, S. Knoche, and G. von Bally, “Two-wavelength method for endoscopic shape measurement by spatial phase-shifting speckle-interferometry,” Appl. Opt. 43, 5429–5437 (2004). [CrossRef]
  15. D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Höfler, “Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths,” Appl. Opt. 48, H1–H8 (2009). [CrossRef]
  16. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695(1999). [CrossRef]
  17. F. Montfort, T. Colomb, F. Charrière, J. Kuhn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006). [CrossRef]
  18. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305–310 (2000). [CrossRef]
  19. J. Kuhn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653–655 (2009). [CrossRef]
  20. C. C. Aleksoff, “Multi-wavelength digital holographic metrology,” Proc. SPIE 6311, 63111D (2006). [CrossRef]
  21. http://www.coherix.com/automotive .
  22. H. Yu, C. Aleksoff, and J. Ni, “A multiple height-transfer interferometric technique,” Opt. Express 19, 16365–16374 (2011). [CrossRef]
  23. National Institute of Standards and Technology ATP project: “High definition metrology and processes—-2 micron manufacturing,” www.atp.nist.gov .
  24. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  25. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  26. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  27. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 61–74 (2006). [CrossRef]
  28. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966). [CrossRef]
  29. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef]
  30. T. Bothe, J. Burke, and H. Helmers, “Spatial phase shifting in electronic speckle pattern interferometry: minimization of phase reconstruction errors,” Appl. Opt. 36, 5310–5316 (1997). [CrossRef]
  31. R. Schodel, A. Nicolaus, and G. Bonsch, “Phase-stepping interferometry: methods for reducing errors caused by camera nonlinearities,” Appl. Opt. 41, 55–63 (2002). [CrossRef]
  32. Howard W. Sams & Co. Engineers, Reference Data for Radio Engineers, 6th ed. (Sams, 1975), Chap. 46, p. 7.
  33. MATLAB, by Mathworks, http://www.Mathworks.com .
  34. K. Falaggis, D. P. Towers, and C. E. Towers, “Multiwavelength interferometry: extended range metrology,” Opt. Lett. 34, 950–952 (2009). [CrossRef]
  35. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Generalized frequency selection in multifrequency interferometry,” Opt. Lett. 29, 1348–1350 (2004). [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  37. M. Nazarathy and J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980). [CrossRef]
  38. L. Xu, M. Mater, and J. Ni, “Focus detection criterion for refocusing in multi-wavelength digital holography,” Opt. Express 19, 14779–14793 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited