OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2968–2978

Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images

Qunxing Huang, Fei Wang, Jianhua Yan, and Yong Chi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 2968-2978 (2012)
http://dx.doi.org/10.1364/AO.51.002968


View Full Text Article

Enhanced HTML    Acrobat PDF (1726 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An inverse radiation analysis using soot emission measured by a high-speed stereoscopic imaging system is described for simultaneous estimation of the 3-D soot temperature and volume fraction distributions in unsteady sooty flames. A new iterative reconstruction method taking self attenuation into account is developed based on the least squares minimum-residual algorithm. Numerical assessment and experimental measurement results of an ethylene/air diffusive flame show that the proposed method is efficient and capable of reconstructing the soot temperature and volume fraction distributions in unsteady flames. The accuracy is improved when self attenuation is considered.

© 2012 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(120.6780) Instrumentation, measurement, and metrology : Temperature

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 28, 2011
Revised Manuscript: March 18, 2012
Manuscript Accepted: March 18, 2012
Published: May 18, 2012

Citation
Qunxing Huang, Fei Wang, Jianhua Yan, and Yong Chi, "Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images," Appl. Opt. 51, 2968-2978 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-2968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Uchiyama, M. Nakajima, and S. Yuta, “Measurement of flame temperature distribution by IR emission computed-tomography,” Appl. Opt. 24, 4111–4116 (1985). [CrossRef]
  2. R. J. Hall and P. A. Bonczyk, “Sooting flame thermometry using emission absorption tomography,” Appl. Opt. 29, 4590–4598 (1990). [CrossRef]
  3. D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Guider, E. J. Weekman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002). [CrossRef]
  4. L. H. Liu and J. Jiang, “Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames,” J. Quant. Spectrosc. Radiat. Transfer 70, 207–215 (2001). [CrossRef]
  5. H. M. Hertz and G. W. Faris, “Emission tomography of flame radicals,” Opt. Lett. 13, 351–353 (1988). [CrossRef]
  6. N. Anikin, R. Suntz, and H. Bochhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B 100, 675–694 (2010). [CrossRef]
  7. F. Cignoli, S. De Luliis, V. Manta, and G. Zizak, “Two-dimensional two-wavelength emission technique for soot diagnostics,” Appl. Opt. 40, 5370–5378 (2001). [CrossRef]
  8. I. Ayrancı, R. Vaillon, N. Selçuk, F. André, and D. Escudié, “Determination of soot temperature, volume fraction and refractive index from flame emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 104, 266–276 (2007). [CrossRef]
  9. K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, “Deconvolution of axisymmetric flame properties using Tikhonov regularization,” Appl. Opt. 45, 4638–4646 (2006). [CrossRef]
  10. K. J. Daun and E. O. Akesson, “Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization,” Appl. Opt. 47, 407–416 (2008). [CrossRef]
  11. C. Lou and H. C. Zhou, “Simultaneous determination of distributions of temperature and soot volume fraction in sooting flames using decoupled reconstruction method,” Numer. Heat Transfer A 56, 153–169 (2009).
  12. D. P. Correia, P. Ferrão, and A. Caldeira-Pires, “Advanced 3D emission tomography flame temperature sensor,” Combust. Sci. Technol. 163, 1–24 (2001). [CrossRef]
  13. Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J., Ser. B 48, 34–41 (2005). [CrossRef]
  14. Y. Q. Gao, Q. X. Yu, W. B. Jiang, and X. Wan, “Reconstruction of three-dimensional arc-plasma temperature fields by orthographic and double-wave spectral tomography,” Opt. Laser Technol. 42, 61–69 (2010). [CrossRef]
  15. D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and J. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD cameras,” J. Heat Transfer 132, 1202–1207 (2010). [CrossRef]
  16. J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391(2011). [CrossRef]
  17. G. Gilabert, G. Lu, and Y. Yan, “Tomographic reconstruction of the luminosity distribution of a combustion flame,” IEEE Trans. Instrum. Meas. 56, 1300–1306 (2007). [CrossRef]
  18. M. M. Hossain, G. Lu, and Y. Yan, “Three-dimensional reconstruction of combustion flames through optical fibre sensing and CCD imaging,” in Proceedings of IEEE I2MTC (IEEE, 2011), pp. 79–83.
  19. Q. X. Huang, F. Wang, D. Liu, Z. Y. Ma, J. H. Yan, Y. Chi, and K. F. Cen, “Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography,” Combust. Flame 156, 565–573 (2009). [CrossRef]
  20. P. J. Coelho, and M. G. Carvalho, “A conservative formulation of the discrete transfer method,” J. Heat Transfer 119, 118–128 (1997). [CrossRef]
  21. M. F. Modest, Radiative Heat Transfer, 2nd ed. (Academic, 2003) pp. 373–376.
  22. H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices offlame soot,” Proc. R. Soc. London, Ser. A 430, 577–591 (1990). [CrossRef]
  23. D. C. L. Fong and M. A. Saunders, “LSMR: An iterative algorithm for sparse least-squares problems,” SIAM J. Sci. Comput. 33 (2011).
  24. P. C. Hansen, “The discrete picard condition for discrete ill-posed problems,” BIT 30, 658–672 (1990). [CrossRef]
  25. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334 (2000). [CrossRef]
  26. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multi-wavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited