OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 2987–2996

Electromechanically driven variable-focus lens based on transparent dielectric elastomer

Sang-ik Son, David Pugal, Taeseon Hwang, Hyouk Ryeol Choi, Ja Choon Koo, Youngkwan Lee, Kwang Kim, and Jae-Do Nam  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 2987-2996 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dielectric elastomers with low elastic stiffness and high dielectric constant are smart materials that produce large strains (up to 300%) and belong to the group of electroactive polymers. Dielectric elastomer actuators are made from films of dielectric elastomers coated on both sides with compliant electrode material. Poly(3,4-ethylenedioxythiophene) (PEDOT), which is known as a transparent conducting polymer, has been widely used as an interfacial layer or polymer electrode in polymer electronic devices. In this study, we propose the transparent dielectric elastomer as a material of actuator driving variable-focus lens system using PEDOT as a transparent electrode. The variable-focus lens module has light transmittance up to 70% and maximum displacement up to 450. When voltage is applied to the fabricated lens module, optical focal length is changed. We anticipate our research to be a starting point for new model of variable-focus lens system. This system could find applications in portable devices, such as digital cameras, camcorder, and cell phones.

© 2012 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(080.3630) Geometric optics : Lenses
(160.2100) Materials : Electro-optical materials
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers

ToC Category:
Optical Design and Fabrication

Original Manuscript: December 8, 2011
Revised Manuscript: March 3, 2012
Manuscript Accepted: March 7, 2012
Published: May 18, 2012

Sang-ik Son, David Pugal, Taeseon Hwang, Hyouk Ryeol Choi, Ja Choon Koo, Youngkwan Lee, Kwang Kim, and Jae-Do Nam, "Electromechanically driven variable-focus lens based on transparent dielectric elastomer," Appl. Opt. 51, 2987-2996 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010). [CrossRef]
  2. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004). [CrossRef]
  3. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009). [CrossRef]
  4. D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004). [CrossRef]
  5. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1 khz bandwidth,” Opt. Express 12, 2138–2149 (2004). [CrossRef]
  6. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (SPIE press, 2001).
  7. K. Kim and S. Tadokoro, Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors (Springer, 2007).
  8. E. Smela, O. Ingana¨s, and I. Lundstro¨m, “Controlled folding of micrometer-size structures,” Science 268, 1735–1738 (1995). [CrossRef]
  9. R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science 284, 1340–1344 (1999). [CrossRef]
  10. L. Qu, Q. Peng, L. Dai, G. Spinks, G. Wallace, and R. Baughman, “Carbon nanotube electroactive polymer materials: Opportunities and challenges,” MRS Bulletin 33, 215–224 (2008). [CrossRef]
  11. J. Nam, H. Choi, Y. Tak, and K. Kim, “Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles,” Sens. Actuators A 105, 83–90 (2003). [CrossRef]
  12. M. Cho, H. Seo, J. Nam, Y. Lee, H. Choi, J. Koo, and Y. Son, “Characteristics of pedot/nbr/pedot solid actuator depending on the nbr polarity,” Mol. Cryst. Liq. Cryst. 472, 289–296 (2007).
  13. M. Cho, H. Seo, J. Nam, H. Choi, J. Koo, K. Song, and Y. Lee, “A solid state actuator based on the pedot/nbr system,” Sens. Actuators B 119, 621–624 (2006). [CrossRef]
  14. M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, and Y. Lee, “An electroactive conducting polymer actuator based on nbr/rtil solid polymer electrolyte,” Smart Mater. Struc. 16, S237 (2007). [CrossRef]
  15. N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, “A dielectric elastomer actuator with self-sensing capability,” Proc. SPIE 6927, 69270V (2008). [CrossRef]
  16. F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals 142, 287–291 (2004). [CrossRef]
  17. S.-M. Kim and K. J. Kim, “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struc. 17, 035011 (2008). [CrossRef]
  18. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836–839 (2000). [CrossRef]
  19. G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787–793 (2003). [CrossRef]
  20. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators A 64, 77–85(1998). [CrossRef]
  21. R. Pelrine, R. Kornbluh, and G. Kofod, “High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223–1225 (2000). [CrossRef]
  22. H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3218–3223.
  23. H. Choi, S. Ryew, K. Jung, H. Kim, J. Jeon, J. Nam, R. Maeda, and K. Tanie, “Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2002), pp. 3212–3217.
  24. G. Kofod and P. Sommer-Larsen, “Silicone dielectric elastomer actuators: Finite-elasticity model of actuation,” Sens. Actuators A 122, 273–283 (2005). [CrossRef]
  25. B.-C. Kim, H. Kim, H. C. Nguyen, M. S. Cho, Y. Lee, J.-D. Nam, H. R. Choi, J. C. Koo, and H.-S. Jeong, “Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses,” Proc. SPIE 6927, 69271M (2008). [CrossRef]
  26. H.-K. Lee, N.-J. Choi, S. Jung, S. Lee, H. Jung, J. W. Ryu, and K.-H. Park, “Application of ionic polymer-metal composites for auto-focusing compact camera modules,” SPIE Reviews 6927, 69271N (2008). [CrossRef]
  27. I. Shimizu, K. Kikuchi, and S. Tsuchitani, “Variable-focal length lens using IPMC,” in ICCAS-SICE (IEEE, 2009), pp. 4752–4756.
  28. V. Vunder, A. Punning, and A. Aabloo, “Variable-focal lens using electroactive polymer actuator,” SPIE Reviews 7977, 79771E (2011). [CrossRef]
  29. M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion-implanted eaps,” SPIE Reviews 7642, 76422K(2010). [CrossRef]
  30. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Adv. Mater. 12, 481–494 (2000). [CrossRef]
  31. T. L. Truong, D.-O. Kim, Y. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, “Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications,” Thin Solid Films 516, 6020–6027 (2008). [CrossRef]
  32. D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, “In-situ blends of polypyrrole/poly(3,4-ethylenedioxythiopene) using vapor phase polymerization technique,” Thin Solid Films 517, 4156–4160 (2009). [CrossRef]
  33. K.-S. Jang, Y.-S. Eom, T.-W. Lee, D. O. Kim, Y.-S. Oh, H.-C. Jung, and J.-D. Nam, “Fabrication of poly(3-hexylthiophene) thin films by vapor-phase polymerization for optoelectronic device applications,” ACS Appl. Mater. Interfaces 1, 1567–1571 (2009). [CrossRef]
  34. R. A. Guerrero, M. W. C. Sze, and J. R. A. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt. 49, 3634–3639 (2010). [CrossRef]
  35. H. Kim, J. Park, N. H. Chuc, H. R. Choi, J. D. Nam, Y. Lee, H. S. Jung, and J. C. Koo, “Development of dielectric elastomer driven micro-optical zoom lens system,” Proc. SPIE 6524, 65241V (2007). [CrossRef]
  36. H. Choi, S. Lee, K. Jung, J. Koo, S. Lee, H. Choi, J. Jeon, and J. Nam, “Tactile display as a braille display for the visually disabled,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2004), pp. 1985–1990.
  37. F. Beer, E. Johnston, and J. DeWolf, Mechanics of Materials (McGraw-Hill, 2006).
  38. A. Sarac, G. Sönmez, and F. Cebeci, “Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes,” J. Appl. Electrochem. 33, 295–301 (2003). [CrossRef]
  39. C. Kvarnström, H. Neugebauer, A. Ivaska, and N. Sariciftci, “Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (atr-ftir) study,” J. Mol. Struct. 521, 271–277 (2000). [CrossRef]
  40. L. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganäs, “Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene),” Synth. Met. 101, 198–199(1999). [CrossRef]
  41. J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, “Electrostrictive polymer nanocomposites exhibiting tunable electrical properties,” Smart Mater. Struc. 14, 87–90 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited