OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 3024–3030

Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab

Zhao Xiangjie, Liu Cangli, Zhang Dayong, and Luo Yongquan  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 3024-3030 (2012)
http://dx.doi.org/10.1364/AO.51.003024


View Full Text Article

Enhanced HTML    Acrobat PDF (1243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A configuration of hole patterned electrode liquid crystal microlens array with an ultrathin glass slab was fabricated. To reduce the fringing electric field effect and avoid the occurrence of disclination lines, an ultrathin glass slab was introduced between the patterned electrode and liquid crystal layer. The glass slab thickness played an important role in effecting the optical performance of the liquid crystal microlens array. An optimum thickness of 30 μm was selected employing numerical simulation method. Using this method, we demonstrated a microlens array that greatly improved the phase profile and focus power. The dynamic focal range of the liquid crystal microlens array may extend from <1.2mm to >8mm and the minimum diameter of the focus spot could be as small as 15 µm.

© 2012 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Optical Devices

History
Original Manuscript: February 13, 2012
Revised Manuscript: March 31, 2012
Manuscript Accepted: April 5, 2012
Published: May 18, 2012

Citation
Zhao Xiangjie, Liu Cangli, Zhang Dayong, and Luo Yongquan, "Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab," Appl. Opt. 51, 3024-3030 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-3024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009). [CrossRef]
  2. C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid crystal microlens with hybrid alignment,” J. Opt. 8, s365–s369 (2006). [CrossRef]
  3. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2003). [CrossRef]
  4. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual frequency nematic liquid crystal,” Appl. Opt. 45, 4576–4582 (2006). [CrossRef]
  5. H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608–1610 (2004). [CrossRef]
  6. S. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991). [CrossRef]
  7. S. Sato, “Application of liquid crystal to variable focusing lenses,” Opt. Rev. 6, 471–485 (1999). [CrossRef]
  8. H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tenability and low operating voltage,” Opt. Express 15, 11328–11335 (2007). [CrossRef]
  9. C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lens with a large aperture by means of polymer stabilization,” Opt. Express 19, 14999–15008 (2011). [CrossRef]
  10. T. Nose, S. Masuda, and S. Sato, “Effects of polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997). [CrossRef]
  11. S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlens with an asymmetric electrode structure,” Jpn. J. Appl. Phys. 41, 1482–1488 (2002). [CrossRef]
  12. G. E. Newskaja and A. Gwozdarev, “Homeotropical-aligned liquid crystal microlens properties,” Proc. SPIE 2731, 214–219 (1996). [CrossRef]
  13. A. Y. Gvosdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid crystal microlens with homeotropic orientation,” J. Opt. Technol. 68, 682–686 (2001). [CrossRef]
  14. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004). [CrossRef]
  15. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992). [CrossRef]
  16. M. Ye, B. Wang, and S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003). [CrossRef]
  17. G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Technol. 75, 563–573 (2008). [CrossRef]
  18. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002). [CrossRef]
  19. Y. H. Lin, H. Ren, K. H. Fang-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005). [CrossRef]
  20. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722(2006). [CrossRef]
  21. X. H. Wang, B. Wang, P. J. Bos, and P. F. McManamon, “Modeling and design of an optimized liquid crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005). [CrossRef]
  22. X. H. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and performance limits of a large aperture high resolution wavefront control system based on a liquid crystal spatial light modulator,” Opt. Eng. 46, 044001 (2007). [CrossRef]
  23. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization insensitive multi-electrode GRIN lens with a blue phase liquid crystal,” Opt. Express 19, 17402–17407 (2011). [CrossRef]
  24. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable lens using nano-scale polymer dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003). [CrossRef]
  25. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue phase liquid crystal,” Opt. Express 19, 8045–8050 (2011). [CrossRef]
  26. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008). [CrossRef]
  27. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004). [CrossRef]
  28. S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988). [CrossRef]
  29. S. Gauza, H. Y. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003). [CrossRef]
  30. Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited