OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 3031–3035

Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range

Sylvain Maine, Charlie Koechlin, Stéphanie Rennesson, Julien Jaeck, Simon Salort, Bruno Chassagne, Fabrice Pardo, Jean-Luc Pelouard, and Riad Haïdar  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 3031-3035 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We retrieve the complex optical index of single-walled carbon nanotube (CNT) films in the 0.6–800 μm spectral range. Results are obtained from a complete set of optical measurements, reflection and transmission, of free-standing CNT films using time domain spectroscopy in the terahertz (THz) and Fourier transform infrared (IR) spectroscopy in the visible–IR. Based on a Drude–Lorentz model, our results reveal a global metallic behavior of the films in the IR, and confirm their high optical index in the THz range.

© 2012 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(160.4236) Materials : Nanomaterials

ToC Category:
Thin Films

Original Manuscript: February 7, 2012
Revised Manuscript: March 9, 2012
Manuscript Accepted: March 12, 2012
Published: May 18, 2012

Sylvain Maine, Charlie Koechlin, Stéphanie Rennesson, Julien Jaeck, Simon Salort, Bruno Chassagne, Fabrice Pardo, Jean-Luc Pelouard, and Riad Haïdar, "Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range," Appl. Opt. 51, 3031-3035 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Jackson and S. Graham, “Specific contact resistance at metal/carbon nanotube interfaces,” Appl. Phys. Lett. 94, 012109 (2009). [CrossRef]
  2. L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett. 94, 081103 (2009). [CrossRef]
  3. Mikhail E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312, 413–416 (2006). [CrossRef]
  4. C. Koechlin, S. Maine, S. Rennesson, R. Haidar, B. Trétout, J. Jaeck, N. Péré-Laperne, and J.-L. Pelouard, “Potential of carbon nanotubes films for infrared bolometers,” Proc. SPIE 7945, 794521 (2011). [CrossRef]
  5. C. Koechlin, S. Maine, R. Haidar, B. Trétout, A. Loiseau, and J.-L. Pelouard, “Electrical characterization of devices based on carbon nanotube films,” Appl. Phys. Lett. 96, 103501 (2010). [CrossRef]
  6. S. Maine, C. Koechlin, R. Fleurier, R. Haidar, N. Bardou, C. Dupuis, B. Attal-Trétout, P. Mérel, J. Deschamps, A. Loiseau, and J.-L. Pelouard, “Mid-infrared detectors based on carbon nanotube films,” Phys. Status Solidi C 7, 2743–2746 (2010). [CrossRef]
  7. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008). [CrossRef]
  8. E. Gaufrès, N. Izard, X. Le Roux, D. Marris-Morini, S. Kazaoui, E. Cassan, and L. Vivien, “Optical gain in carbon nanotubes,” Appl. Phys. Lett. 96, 231105 (2010). [CrossRef]
  9. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low density nanotube array,” Nano Lett. 8, 446–451 (2008). [CrossRef]
  10. X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97, 163116 (2010). [CrossRef]
  11. H. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99, 211103 (2011). [CrossRef]
  12. B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Basca, J.-P. Salvetat, and L. Forró, “Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films,” Phys. Rev. B 61, R2469–R2471 (2000). [CrossRef]
  13. A. Ugawa, J. Hwang, H. H. Gommans, H. Tashiro, A. G. Rinzler, and D. B. Tanner, “Far-infrared to visible optical conductivity of single-wall carbon nanotubes,” Curr. Appl. Phys. 1, 45–49 (2001). [CrossRef]
  14. Á. Pekker and K. Kamarás, “Wide-range optical studies on various single-walled carbon nanotubes: origin of the low-energy gap,” Phys. Rev. 84, 075475 (2011). [CrossRef]
  15. F. Borondics, K. Kamarás, M. Nikolou, D. B. Tanner, Z. H. Chen, and A. G. Rinzler, “Charge dynamics in transparent single-walled nanotube films from optical transmission measurements,” Phys. Rev. B 74, 045431 (2006). [CrossRef]
  16. K. Thirunavukkuarasu, F. Henrich, K. Kamarás, and C. A. Kuntscher, “Infrared spectroscopic studies on unoriented single-walled carbon nanotube films under hydrostatic pressure,” Phys. Rev. 81, 045424 (2010). [CrossRef]
  17. S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loufty, M. Tondusson, E. Freysz, and A. Kumar, “Terahertz time domain spectroscopy to detect low frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem.4363–4366 (2010). [CrossRef]
  18. T.-I. Jeon, K.-J. Kim, C. Kang, I. H. Maeng, J. Son, K. H. An, J. Y. Lee, and Y. H. Lee, “Optical and electrical properties of preferentially anisotropic single-walled carbon-nanotube films in terahertz region,” J. Appl. Phys. 95, 5736–5740(2004). [CrossRef]
  19. T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the far infrared absorption of carbon nanotube films,” Phys. Rev. Lett. 101, 267403 (2008). [CrossRef]
  20. I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. And, and Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90, 051914(2007). [CrossRef]
  21. H. Nishimura, N. Minami, and R. Shimano, “Dielectric properties of single-walled carbon nanotubes in the terahertz frequency range,” Appl. Phys. Lett. 91, 011108 (2007). [CrossRef]
  22. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Karamas, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305, 1273–1276 (2004). [CrossRef]
  23. H. Kataura, Y. Kumazawa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103, 2555–2558 (1999). [CrossRef]
  24. M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2, 155–159 (2002). [CrossRef]
  25. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: theory and interpretation of experiment,” Phys. Rev. 81, 205423 (2010). [CrossRef]
  26. C. L. Kane and E. J. Mele, “Size, shape, and low energy electronic structure of carbon nanotubes,” Phys. Rev. Lett. 78, 1932–1935 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited