OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 3046–3053

Compact micromachined infrared bandpass filters for planetary spectroscopy

Willie C. Merrell, II, Shahid Aslam, Ari D. Brown, James A. Chervenak, Wei-Chung Huang, Manuel Quijada, and Edward J. Wollack  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 3046-3053 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1041 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The future needs of space-based, observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high-radiation and low-temperature environments. Here, we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 µm and report good agreement between the modeled and measured response. We present a technique of using standard micromachining processes for semiconductor fabrication to make compact, free-standing, resonant, metal mesh filter arrays with silicon support frames. The process can be customized to include multiple detector array architectures, and the silicon frame provides lightweight mechanical support with low form factor.

OCIS Codes
(040.1240) Detectors : Arrays
(120.2440) Instrumentation, measurement, and metrology : Filters
(220.4000) Optical design and fabrication : Microstructure fabrication
(040.2235) Detectors : Far infrared or terahertz

ToC Category:

Original Manuscript: February 10, 2012
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 27, 2012
Published: May 18, 2012

Willie C. Merrell, Shahid Aslam, Ari D. Brown, James A. Chervenak, Wei-Chung Huang, Manuel Quijada, and Edward J. Wollack, "Compact micromachined infrared bandpass filters for planetary spectroscopy," Appl. Opt. 51, 3046-3053 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. National Research Council, Vision and Voyages for Planetary Science in the Decade 2013–2022 (National Academy, 2011).
  2. NASA-ESA Report, Joint Science Definition Team, “Europa Jupiter System Mission—joint summary report,” http://opfm.jpl.nasa.gov/library .
  3. J. Boldt, “Overview of JEO model payload,” presented at the Europa Jupiter System Mission 2nd Instrument Workshop, Baltimore, Maryland, 15–17July2009.
  4. K. Clarke, T. Magner, and C. Erd, “Europa Jupiter Systems mission overview,” presented at the Europa Jupiter System Mission 4th Instrument Workshop, Pasadena, California, 27–29July2010.
  5. R. Ulrich, “Interference filters for the far infrared,” Appl. Opt. 7, 1987–1996 (1968). [CrossRef]
  6. V. Tomaselli, D. Edewaard, P. Gillan, and K. Möller, “Far-infrared bandpass filters from cross-shaped grids,” Appl. Opt. 20, 1361–1366 (1981). [CrossRef]
  7. P. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006). [CrossRef]
  8. P. Goldsmith, Quasi-Optical Systems: Gausian Beam Quasioptical Propagation and Applications (IEEE, 1998).
  9. H. Booker, “Slot aerials and their relation to complementary wire aerials (Babinet’s principle),” J. Inst. Elect. Eng. 93, 620–626 (1946). [CrossRef]
  10. G. Holah, “Far-infrared and submillimeter-wavelength filters,” in Infrared and Millimeter Waves, Vol. 6, K. J. Button, ed. (Academic, 1982), pp. 305–409.
  11. U. Akgun, P. Bruecken, A. Ayan, F. Duru, J. Olson, E. Albayrak, E. Gulmez, A. Mestvirishvili, Y. Onel, and I. Schmidt, “Radiation damage and light transmission studies on air core light guides,” IEEE Trans. Nucl. Sci. 53, 1547–1550 (2006). [CrossRef]
  12. G. Wang, G. Pan, L. Dou, R. Yu, T. Zhang, S. Jiang, and Q. Dai, “Proton beam modification of isotactic polypropylene,” Nucl. Instrum. Methods Phys. Res. Sect. B 27, 410–416 (1987). [CrossRef]
  13. K. Renk, and L. Genzel, “Interference filters and Fabry–Perot interferometers for the far infrared,” Appl. Opt. 1, 643–648 (1962). [CrossRef]
  14. R. Rawcliffe, and C. M. Randall, “Metal mesh interference filters for the far infrared,” Appl. Opt. 6, 1353–1358(1967). [CrossRef]
  15. M. Dragovan, “Cryogenic metal mesh bandpass filters for submillimeter astronomy,” Appl. Opt. 23, 2798–2802(1984). [CrossRef]
  16. P. Huggard, M. Meyringer, A. Schilz, K. Goller, and W. Prettl, “Far-infrared bandpass filters from perforated metal screens,” Appl. Opt. 33, 39–41 (1994). [CrossRef]
  17. C. Chen, M. Tsai, T. Chuang, Y. Tsung, and S. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007). [CrossRef]
  18. A. Melo, M. Kornberg, P. Kaufmann, M. Piazzetta, E. Bortolucci, M. Zakia, O. Bauer, A. Poglitsch, and A. Alves da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt. 47, 6064–6069 (2008). [CrossRef]
  19. Lakeshore Cryotronics, Inc., “THz and far IR bandpass filters,” http://www.lakeshore.com/products/THz-And-Far-IR-Band-Pass-Filters/Models/Pages/Overview.aspx .
  20. D. Porterfield, J. Hesler, R. Densing, E. Mueller, T. Crowe, and R. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6046–6052 (1994). [CrossRef]
  21. G. Pisano, P. Ade, and S. Weaver, “Polarization effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006). [CrossRef]
  22. M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  23. E. Wollack, D. Fixsen, A. Kogut, M. Limon, P. Mirel, and J. Singal, “Radiometric waveguide calibrators,” IEEE Trans. Instr. Meas. 56, 2073–2078 (2007). [CrossRef]
  24. S. Chase and R. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983). [CrossRef]
  25. S. Kuznetsov, V. Kubarev, P. Kalinin, B. Goldenberg, V. Eliseev, E. Petrova, and N. Vinokurov, “Development of metal mesh based quasi-optical selective components and their applications in high-power experiments at Novosibirsk terahertz FEL,” in Proceedings of FEL 2007 (2007), pp. 89–92.
  26. C. Winnewisser, F. Lewen, J. Weinzierl, and H. Helm, “Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy,” Appl. Opt. 38, 3961–3967 (1999). [CrossRef]
  27. J. Iwanczyk, Y. Wang, J. Bradley, J. Conley, A. Albee, and T. Economou, “Performance and durability of HgI2 X-ray detectors for space missions,” IEEE Trans. Nucl. Sci. 36, 841–845 (1989). [CrossRef]
  28. B. Patt, R. Dolin, T. Devore, J. Markakis, J. Iwanczyk, N. Dorri, and J. Trombka, “Radiation damage resistance in mercuric iodide X-ray detectors,” Nucl. Instr. Meth. Phys. Res. A 299, 176–181 (1990). [CrossRef]
  29. J. Fortin and T. Lu, “Ultraviolet radiation induced degradation of poly-para-xylylene (parylene) thin films,” Thin Solid Films 397, 223–228 (2001). [CrossRef]
  30. We also tried Ti/Au, Mo2N, and TiN as seed layers. For Mo2N and TiN, the electroplated film had poor adhesion to the substrate and Ti/Au had high surface roughness.
  31. J. Adams, T. Herter, G. Gull, J. Schoenwald, C. Henderson, L. Keller, J. De Buizer, G. Stacey, and T. Nikola, “FORCAST: a first light facility instrument for SOFIA,” Proc. SPIE 7735, 77351U (2010). [CrossRef]
  32. N. Jethava, J. Chervenak, A. Brown, D. Benford, G. Kletetschka, V. Mikula, and K. U-yen, “Development of superconducting transition edge sensors based on electron-phonon decoupling,” Proc. SPIE 7741, 774120 (2010). [CrossRef]
  33. P. Mauskopf, P. Ade, J. Beyer, M. Bruijn, J. Gao, D. Glowaca, D. Goldie, D. Griffin, M. Griffin, F. Hoevers, P. Khosropanah, P. Kooijma, P. De Korte, D. Morozov, A. Murphy, C. O’Sullivan, M. Ridder, N. Trappe, H. Van Weers, J. Van Der Kuur, and S. Withington, “TES focal plane for SPICA-SAFARI,” in Proceedings of the 21st International Symposium on Space Terahertz Technology (National Radio Astronomy Observatory, 2010) pp. 246–255.
  34. J. Wei, D. Olaya, B. Karasik, S. Pereverzev, A. Sergeev, and M. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3, 496–500 (2008). [CrossRef]
  35. K. Irwin and G. Hilton, “Transition edge sensors” in Cryogenic Particle Detection, C. Enss, ed. (Springer, 2005), pp. 63–149.
  36. C. Tang, E. Lennon, G. Fredrickson, E. Kramer, and C. Hawker, “Evolution of block copolymer lithography to highly ordered square arrays,” Science 322, 429–432 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited