OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 3059–3070

Interferometric spatial coherence tomography: focusing fringe contrast to planes of interest using a quasi-monochromatic structured light source

Joachim Heil, Hans-Martin Heuck, Willi Müller, Matthias Netsch, and Joachim Wesner  »View Author Affiliations

Applied Optics, Vol. 51, Issue 15, pp. 3059-3070 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3855 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interferograms of plane parallel optical flats are hard to interpret when acquired with coherent illumination because of the complex fringe pattern resulting from the superposition of three main contributions, namely from the reference surface and the front and back sample surfaces. We illuminate the sample by a field of high temporal and specially tailored partial spatial coherence. This limits the fringe contrast to sheets of adjustable position and thickness along the axis of the interferometer. We outline the technique and demonstrate its application together with phase shifting interferometry to extract the topography of front and back surfaces of transparent samples.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 3, 2012
Revised Manuscript: March 12, 2012
Manuscript Accepted: March 23, 2012
Published: May 18, 2012

Joachim Heil, Hans-Martin Heuck, Willi Müller, Matthias Netsch, and Joachim Wesner, "Interferometric spatial coherence tomography: focusing fringe contrast to planes of interest using a quasi-monochromatic structured light source," Appl. Opt. 51, 3059-3070 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Malacara, Optical Shop Testing (Wiley, 1978).
  2. J. Heil, T. Bauer, S. Schmax, T. Sure, and J. Wesner, “Phase shifting Fizeau interferometry of front and back surfaces of optical flats,” Appl. Opt. 46, 5282–5292 (2007). [CrossRef]
  3. P. de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Appl. Opt. 39, 2658–2663 (2000). [CrossRef]
  4. L. L. Deck, “Multiple surface phase shifting interferometry,” Proc. SPIE 4451, 424–431 (2001). [CrossRef]
  5. L. L. Deck, “Absolute distance measurements using FTPSI with a widely tunable IR laser,” Proc. SPIE 4778, 218–226 (2002). [CrossRef]
  6. ZYGO verifire, Zygo Corporation, Laurel Brook Road, Middlefield, CT 06455-0448 ( http://www.zygo.com ).
  7. P. de Groot, “Metrology of transparent flats,” in Optical Fabrication and Testing Workshop, Technical Digest (Optical Society of America, 1994), pp. 160–163.
  8. P. de Groot, “Methods and apparatus for profiling surfaces of transparent objects,” U.S. patent 5, 4888, 477 (30Jan.1996).
  9. FizCam 2000, 4D Technology Corporation, 3280 E. Hemisphere Loop, Suite 146, Tucson, AZ 85706 ( http://www.4dtechnology.com ).
  10. J. Seok Oh and S.-W. Kim, “Femtosecond laser pulses for surface profile metrology,” Opt. Lett. 30, 2650–2652 (2005). [CrossRef]
  11. J. Schwider, “Superposition fringes for profiling applications,” in Optical Measurement Systems for Industrial Inspection V, W. Osten, C. Gorecki, and E. L. Novak, eds. (2007), 661627.
  12. J. Schwider, “Coarse frequency comb interferometry,” Proc. SPIE 7063, 706304 (2008). [CrossRef]
  13. J. Schwider, “Multiple beam Fizeau interferometer with frequency comb illumination,” DGAO Proc. C15 (2009).
  14. J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun. 282, 3308–3324 (2009). [CrossRef]
  15. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39, 4107–4111 (2000). [CrossRef]
  16. W. Wang, H. Kozaki, M. Takeda, and J. Rosen, “New principle for optical tomography and profilometry based on spatial coherence synthesis with a spatially modulated extended light source,” Proc. SPIE 4596, 54–65 (2001). [CrossRef]
  17. W. Wang, H. Kozaki, J. Rosen, and M. Takeda, “Synthesis of longitudinal coherence functions by spatial modulation of an extended light source: a new interpretation and experimental verifications,” Appl. Opt. 41, 1962–1971 (2002). [CrossRef]
  18. Z. Duan, M. Gokhler, J. Rosen, H. Kozaki, N. Ishii, and M. Takeda, “Synthetic spatial coherence function for optical tomography and profilometry, simultaneous realization of longitudinal coherence scan and phase shift,” Proc. SPIE 4777, 110–117 (2002). [CrossRef]
  19. Z. Duan, H. Kozaki, Y. Miyamoto, J. Rosen, and M. Takeda, “Synthetic spatial coherence function for optical tomography and profilometry: influence of the observation condition,” Proc. SPIE 5531, 236–243 (2004). [CrossRef]
  20. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free absolute interferometry based on angular spectrum scanning,” Opt. Express 14, 655–663 (2006). [CrossRef]
  21. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator,” Opt. Express 14, 12109–12121 (2006). [CrossRef]
  22. Z. Liu, T. Gemma, J. Rosen, and M. Takeda, “Improved illumination system for spatial coherence control,” Appl. Opt. 49, D12–D16 (2010). [CrossRef]
  23. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13, 9629–9635 (2005). [CrossRef]
  24. SAPPHIRE-488 laser, COHERENT, 5100 Patrik Henry Drive, Santa Clara, CA 95054.
  25. Point-Source, Mitchel Point, Hamble, UK, 5031 4RF.
  26. M. Küchel, “Vorrichtung und Verfahren zur Verminderung der Wirkungen kohärenter Bildfehler in einem Interferometer,” Offenlegungsschrift DE 101, 21 516 A 1, Deutsches Patent- und Markenamt, Offenlegungstag (7Nov.2002).
  27. M. Küchel, “Reducing coherent artifacts in an interferometer,” in International Application published under the Patent Cooperation Treaty (PCT) International Publication Number: WO 02/090880 A1. (14Nov.2002).
  28. M. Küchel, “Spatial coherence in interferometry, Zygos’s new method to reduce intrinsic noise in interferometers,” http://www.zygo com/library/papers , and patents referenced therein.
  29. L L. Deck, D. Stevenson, J. E. Gratix, and C. A. Zanoni, “Apparatus and method(s) for reducing the effects of coherent artifacts in an interferometer,” U.S. patent 6,643,024(4Nov.2003).
  30. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light6th ed. (Pergamon, 1980).
  31. P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica 1, 201–210 (1934). [CrossRef]
  32. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785–795 (1938). [CrossRef]
  33. H. Fujiwara, T. Asakura, and K. Murata, “On the van Cittert–Zernike theorem,” Opt. Quantum Electron. 4, 197–205 (1972). [CrossRef]
  34. A. M. Zarubin, “Three-dimensional generalization of the van Cittert–Zernike theorem to wave and particle scattering,” Opt. Commun. 100, 491–507 (1993). [CrossRef]
  35. F. L. Pedrotti, L. S. Pedrotti, and W. Bausch, Optik, eine Einführung (Prentice Hall, 1996).
  36. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 94–140 (and references therein).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited