OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 3081–3090

Wide angle conoscopic interference patterns in uniaxial crystals

Francisco E. Veiras, María T. Garea, and Liliana I. Perez  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 3081-3090 (2012)
http://dx.doi.org/10.1364/AO.51.003081


View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fringe pattern obtained when a divergent (or convergent) beam goes through a sample of birefringent crystal between two crossed polarizers contains information that is inherent to the crystalline sample under study. The formation of fringe patterns is analyzed from distinct approaches and with different degrees of approximation considering cones of light of large numerical aperture. We obtain analytic explicit formulas of the phase shift on the screen and compare them with the exact numerical solution. The results obtained are valid for arbitrary orientation of the optical axis and are not restricted either to low birefringence or to small angles of incidence. Moreover, they enable the extraction of the main features related to the characterization of uniaxial crystal slabs, such as the optical axis tilt angle and the principal refractive indices.

© 2012 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(160.1190) Materials : Anisotropic optical materials
(230.5440) Optical devices : Polarization-selective devices
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.3160) Physical optics : Interference

ToC Category:
Physical Optics

History
Original Manuscript: January 25, 2012
Manuscript Accepted: March 19, 2012
Published: May 18, 2012

Citation
Francisco E. Veiras, María T. Garea, and Liliana I. Perez, "Wide angle conoscopic interference patterns in uniaxial crystals," Appl. Opt. 51, 3081-3090 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-3081


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Van Horn and H. Winter, “Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles,” Appl. Opt. 40, 2089–2094 (2001). [CrossRef]
  2. D. Su and C. Hsu, “Method for determining the optical axis and (ne, no) of a birefringent crystal,” Appl. Opt. 41, 3936–3940 (2002). [CrossRef]
  3. P. Lee, J. Pors, M. van Exter, and J. Woerdman, “Simple method for accurate characterization of birefringent crystals,” Appl. Opt. 44, 866–870 (2005). [CrossRef]
  4. F. E. Veiras, G. Pérez, M. T. Garea, and L. I. Perez, “Characterization of uniaxial crystals through the study of fringe patterns,” J. Phys.: Conf. Ser. 274, 012030 (2011). [CrossRef]
  5. F. E. Veiras, L. I. Perez, and M. T. Garea, “Phase shift formulas in uniaxial media: an application to waveplates,” Appl. Opt. 49, 2769–2777 (2010). [CrossRef]
  6. H. Guo, X. Weng, G. Sui, X. Dong, X. Gao, and S. Zhuang, “Propagation of an arbitrary incident light in a uniaxially planar slab,” Opt. Commun. 284, 5509–5512 (2011). [CrossRef]
  7. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  8. M. Françon, Encyclopedia of Physics. Fundamental of Optics, S. Flugge, ed.(Springer, 1956), vol. XXIV.
  9. M. C. Simon and M. T. Garea, “Plane parallel birefringent plates as polarization interferometers,” Optik 87, 95–102 (1991).
  10. F. E. Veiras, M. T. Garea, and L. I. Perez, “Fringe pattern analysis by means of wide angle conoscopic illumination of uniaxial crystals,” in Conf. Proc. VII International Conference of young scientists and specialists “Optics–2011” (St Petersburg, Russia, 17–21Oct.2011), pp. 55–57.
  11. J. W. GoodmanSpeckle Phenomena in Optics: Theory and Applications (Ben Roberts, 2007).
  12. J. W. Goodman, J W Statistical Optics (Wiley Classics Library, 2000).
  13. A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: theory,” Phys. Rev. A 78, 063806 (2008). [CrossRef]
  14. D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009). [CrossRef]
  15. M. A. Alonso, “Exact description of free electromagnetic wave fields in terms of rays,” Opt. Express 11, 3128–3135 (2003). [CrossRef]
  16. M. Anwar and R. Small, “Geometrical-optics solution for self-focusing in nonlinear optics,” J. Opt. Soc. Am. 71, 124–126 (1981). [CrossRef]
  17. P. Berczynski, “Complex geometrical optics of nonlinear inhomogeneous fibres,” J. Opt. 13, 035707 (2011). [CrossRef]
  18. M. Sluijter, M. Xu, H. P. Urbach, and D. K. G. de Boer, “Applicability of geometrical optics to in-plane liquid-crystal configurations,” Opt. Lett. 35, 487–489 (2010). [CrossRef]
  19. L. I. Perez and M. T. Garea, “Propagation of 2D and 3D Gaussian beams in an anisotropic uniaxial medium: vectorial and scalar treatment,” Optik 111, 297–306 (2000).
  20. L. I. Perez, “Nonspecular transverse effects of polarized and unpolarized symmetric beams in isotropic-uniaxial interfaces,” J. Opt. Soc. Am. 20, 741–752 (2003). [CrossRef]
  21. M. C. Simon, “Ray tracing formulas for monoaxial optical components,” Appl. Opt. 22, 354–360 (1983). [CrossRef]
  22. M. C. Simon and R. M. Echarri, “Ray tracing formulas for monoaxial optical components: vectorial formulation,” Appl. Opt. 25, 1935–1939 (1986). [CrossRef]
  23. M. C. Simon and K. V. Gottschalk, “Waves and rays in uniaxial birefringent crystals,” Optik 118, 457–470 (2007). [CrossRef]
  24. M. C. Simon, L. I. Perez, and F. E. Veiras, “Parallel beams and fans of rays in uniaxial crystals,” AIP Conf. Proc. 992, 714–719 (2008). [CrossRef]
  25. M. C. Simon, “Image formation through monoaxial plane-parallel plates,” Appl. Opt. 27, 4176–4182 (1988). [CrossRef]
  26. Note that the sign of A is related to the arbitrary way in which we compute the phase difference between waves: ordinary minus extraordinary.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited