OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 15 — May. 20, 2012
  • pp: 3096–3103

Fluidic sensor based on the side-opened and suspended dual-core fiber

Guanjun Wang, Jiansheng Liu, Zheng Zheng, Yi Yang, Jing Xiao, Shuna Li, and Yusheng Bian  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 3096-3103 (2012)
http://dx.doi.org/10.1364/AO.51.003096


View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For accelerating the response and enhancing the sensitivity simultaneously, a novel fluidic sensor based on a side-opened and suspended dual-core fiber and dual-beam interference detection mechanism is first explored and analyzed here. The side opening ensures a fast response by allowing fluidic analyte to approach the fiber core laterally. The dual-beam Mach–Zehnder interferemetry provides a relative higher sensitivity. Calculation results show that a sensitivity of 2.1×106 refractive index unit (RIU) within a response time of 10 s could be achievable, which reflects its potential impact on constructing a fluid refractometer for fast-response and high-sensitivity detection. Moreover, the relationship of the sensing sensitivity and the detected dynamic range of this suspended dual-core fiber structure, polarization, and the transmitting waveband are also analyzed.

© 2012 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 18, 2011
Revised Manuscript: February 19, 2012
Manuscript Accepted: February 21, 2012
Published: May 18, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Guanjun Wang, Jiansheng Liu, Zheng Zheng, Yi Yang, Jing Xiao, Shuna Li, and Yusheng Bian, "Fluidic sensor based on the side-opened and suspended dual-core fiber," Appl. Opt. 51, 3096-3103 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-15-3096


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35, 856–858 (2010). [CrossRef]
  2. W. Yuan, G. E. Town, and O. Bang, “Ultrasensitive refractive index sensor based on twin-core photonic bandgap fibers,” Proc. SPIE 7503, 75035A (2009). [CrossRef]
  3. Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010). [CrossRef]
  4. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19), 7790–7798 (2011). [CrossRef]
  5. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003). [CrossRef]
  6. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17, 18533–18542 (2009). [CrossRef]
  7. G. Wang, J. Liu, Y. Yang, Z. Zheng, J. Xiao, and R. Li, “Gas Raman sensing with multi-opened-up suspended core fibre,” Appl. Opt. 50, 6026–6032 (2011). [CrossRef]
  8. Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fibre methane sensor with multiple side-openings,” IEEE Photon. Technol. Lett. 22, 296–298(2010). [CrossRef]
  9. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15, 11843 (2007). [CrossRef]
  10. A. Harhira, J. Lapointe, and R. Kashyap, “High sensitivity inline fiber Mach-Zehnder interferometer bend sensor using a twin core fiber,” Proc. SPIE 7653, 765315 (2010). [CrossRef]
  11. O. Frazão, S. F. O. Silva, J. L. Santos, J. Kobelke, and K. Schuster, “All fibre Mach-Zehnder interferometer based on suspended twin-core fibre for simultaneous measurement of three parameters,” Proc. SPIE 7839, 78391M (2010). [CrossRef]
  12. S. F. Oliveira Silva, J. L. Santos, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of three parameters using an all-fiber Mach—Zehnder interferometer based on suspended twin-core fibers,” Opt. Eng. 50, 030501 (2011). [CrossRef]
  13. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18, 3075 (2007). [CrossRef]
  14. COMSOLAB, http://www.comsol.com .
  15. A. Banerjee, S. Mukherjee, R. K. Verma, B. Jana, T. K. Khan, M. Chakroborty, R. Das, S. Biswas, A. Saxena, V. Singh, R. M. Hallen, R. S. Rajput, P. Tewari, S. Kumar, V. Saxena, A. K. Ghosh, J. John, and P. Gupta-Bhay, “Fiber optic sensing of liquid refractive index,” Sens. Actuators B 123, 594–605 (2007). [CrossRef]
  16. F. Fadaei, S. Shirazian, and S. N. Ashrafizadeh, “Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors,” Desalination 275, 126–132 (2011). [CrossRef]
  17. M. J. Weber, Hand Book of Optical Materials (CRC Press, 2003).
  18. J. Hong, J. S. Choi, G. Han, J. K. Kang, C. M. Kim, T. S. Kim, and D. S. Yoon, “A Mach-Zehnder interferometer based on silicon oxides for biosensor applications,” Anal. Chim. Acta 573–574, 97–103 (2006). [CrossRef]
  19. R. Rannacher, “Finite element methods for the incompressible Navier-Stokes equations,” http://www.numerik.uni-hd.de/Oberwolfach-Seminar/CFD-Course.pdf .
  20. V. Girault, “Incompressible finite element methods for Navier–Stokes equations with nonstandard boundary conditions in R3,” Math. Comput. 51, 55–74 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited