OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3120–3131

Accuracy enhancement of 3D profilometric human face reconstruction using undecimated wavelet analysis

Fatemeh Mohammadi, Khosro Madanipour, and Amir Hossein Rezaie  »View Author Affiliations

Applied Optics, Vol. 51, Issue 16, pp. 3120-3131 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional profilometric object reconstruction is a challenging topic; among the various methods available, we implement the line projection technique, which has superiorities over other methods. In order to increase the accuracy of measurement, a wavelet transform analysis is used in two stages of denoising and phase extraction. Because of the denoising capability and multiresolution characteristics of wavelet transforms, we employ an undecimated wavelet transform for noise reduction and a continuous wavelet transform in the phase extraction stage. The aim is to add a preprocessing stage of denoising based on the undecimated wavelet transform to enhance the accuracy of measurement in noisy patterns. The experimental results on the human face as a complex object demonstrate that the combination of undecimated and continuous wavelet transforms could increase measurement accuracy in noise-contaminated patterns.

© 2012 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2650) Image processing : Fringe analysis
(100.6890) Image processing : Three-dimensional image processing
(100.7410) Image processing : Wavelets
(150.6910) Machine vision : Three-dimensional sensing
(150.0155) Machine vision : Machine vision optics

ToC Category:
Image Processing

Original Manuscript: October 3, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 14, 2011
Published: May 21, 2012

Fatemeh Mohammadi, Khosro Madanipour, and Amir Hossein Rezaie, "Accuracy enhancement of 3D profilometric human face reconstruction using undecimated wavelet analysis," Appl. Opt. 51, 3120-3131 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Zhang, “High-resolution, real-time 3-D shape measurement,” Ph.D. dissertation (Stony Brook University, 2005).
  2. E. Stoykova, A. A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3DTV: 3D time-varying scene capture technologies—a survey,” IEEE Trans. Circuits Syst. Video Technol. 17, 1568–1586 (2007). [CrossRef]
  3. D. C. Méndez, S. C. Méndez, A. L. Quezada, H. Rudolph, and M. Lehman, “Face recognition system using fringe projection and moiré: characterization with fractal parameters,” Int. J. Comput. Sci. Network Secur. 9, 78–84 (2009).
  4. L. Wu, H. Li, N. Yu, and M. Li, “Accurate 3D facial synthesis for plastic surgery simulation,” in Advances in Multimedia Modeling, Part II, T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S. Chua, and L.-T. Chia, eds. (Springer, 2006), pp. 269–278.
  5. W. S. Lee and N. M. Thalmann, “Fast head modeling for animation,” Image Vis. Comput. 18, 355–364 (2000). [CrossRef]
  6. H. H. S. Ip and L. Yin, “Constructing a 3D individualized head model from two orthogonal views,” Vis. Comput. 12, 254–266 (1996). [CrossRef]
  7. S. F. Wang and S. H. Lai, “Efficient 3D face reconstruction from a single 2D image by combining statistical and geometrical information,” in Computer Vision: ACCV 2006, Part II, P. J. Narayanan, S. K. Nayar, and H.-Y. Shum, eds. (Springer, 2006), 427–436 (2006).
  8. A. Hayasaka, T. Shibahara, K. Ito, T. Aoki, H. Nakajima, and K. Kobayashi, “A passive 3D face recognition system and its performance evaluation,” IEICE Transactions on Fundamentals E91-A, 1974–1981 (2008). [CrossRef]
  9. Y. Sui and F. Da, “Stereo vision based 3D reconstruction algorithm of human face,” in 2009 Chinese Conference on Pattern Recognition (IEEE, 2009), 196–200.
  10. N. D’Apuzzo, “3D Laser Scanning Systems,” http://www.hometrica.ch/docs/laserscanning.pdf .
  11. L. Kovacs, A. Zimmermann, G. Brockmann, M. Gühring, H. Baurecht, N. A. Papadopulos, K. Schwenzer-Zimmerer, R. Sader, E. Biemer, and H. F. Zeilhofer, “Three-dimensional recording of the human face with a 3D laser scanner,” J. Plast. Reconstr. Aesthet. Surg. 59, 1193–1202 (2006). [CrossRef]
  12. P. S. Huang, F. Jin, and F. P Chiang, “Quantitative evaluation of corrosion by a digital fringe projection technique,” Opt. Lasers Eng. 31, 371–380 (1999). [CrossRef]
  13. S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006). [CrossRef]
  14. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  15. Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004). [CrossRef]
  16. C. J. Tay, C. Quan, and L. Chen, “Phase retrieval with a three-frame phase-shifting algorithm with an unknown phase shift,” Appl. Opt. 44, 1401–1409 (2005). [CrossRef]
  17. E. H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multifrequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17, 7818–7830 (2009). [CrossRef]
  18. A. Z. A. Abid, “Fringe pattern analysis using wavelet transforms,” Ph.D. dissertation (Liverpool John Moores University, 2008).
  19. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform,” Opt. Commun. 266, 482–489 (2006). [CrossRef]
  20. L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010). [CrossRef]
  21. Y.-F. Li, “Image denoising based on undecimated discrete wavelet transform,” in 2007 International Conference on Wavelet Analysis and Pattern Recognition (IEEE, 2007), pp. 527–531.
  22. C. Stein, “Estimation of the mean of a multivariate normal distribution,” Ann. Stat. 9, 1135–1151 (1981). [CrossRef]
  23. D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995). [CrossRef]
  24. D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika 81, 425–455 (1994). [CrossRef]
  25. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Wavelet shrinkage: asymptopia?” J. R. Stat. Soc. Ser. B 57, 301–369 (1995).
  26. D. L. Donoho and I. M. Johnstone, “Minimax estimation via wavelet shrinkage,” Ann. Stat. 26, 879–921 (1998). [CrossRef]
  27. H. Guo, “Theory and application of the shift invariant, time varying, and undecimated wavelet transform,” Master’s thesis (Rice University, 1995).
  28. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995). [CrossRef]
  29. C. J. Tay, C. Quan, W. Sun, and X. Y. He, “Demodulation of a single interferogram based on continuous wavelet transform and phase derivative,” Opt. Commun. 280, 327–336 (2007). [CrossRef]
  30. M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009). [CrossRef]
  31. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation using a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006). [CrossRef]
  32. H. Niu, C. Quan, and C. J. Tay, “Phase retrieval of speckle fringe pattern with carriers using 2D wavelet transform,” Opt. Laser Eng. 47, 1334–1339 (2009). [CrossRef]
  33. Q. Zhang, W. Chen, and Y. Tang, “Method of choosing the adaptive level of discrete wavelet decomposition to eliminate zero component,” Opt. Commun. 282, 778–785 (2009). [CrossRef]
  34. H. Liu, A. N. Cartwright, and C. Basaran, “Moiré interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms,” Appl. Opt. 43, 850–857 (2004). [CrossRef]
  35. E. M. Barj, M. Afifi, A. Idrissi, S. Rachafi, and K. Nassim, “Wavelet phase evaluation extended to digital speckle pattern interferometry,” Moroccan J. Cond. Matter 5, 163–167 (2004).
  36. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. 11, 107–117 (1994). [CrossRef]
  37. Y. Lu, X. Wang, and X. Zhang, “Weighted least-squares phase unwrapping algorithm based on derivative variance correlation map,” Optik 118, 62–66 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited