OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3153–3161

Three-dimensional reconstruction of subsurface defects using finite-difference modeling on pulsed thermography

J. C. Ramirez-Granados, G. Paez, and M. Strojnik  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3153-3161 (2012)
http://dx.doi.org/10.1364/AO.51.003153


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a technique to analyze pulsed thermography videos in order to detect and reconstruct subsurface defects in homogeneous and layered objects. The technique is based on the analysis of the thermal response of an object to a heat pulse. This thermal response is compared to the predictions of a finite-difference model that is systematically and progressively adjusted to minimize a cost function. With this minimization process, we obtain a depth and a thickness function that allow us to determine the three-dimensional shape, size, depth, thickness, and location of internal defects. The detected defects are reliably reconstructed with graphics of easy interpretation.

© 2012 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(110.3080) Imaging systems : Infrared imaging
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 7, 2011
Revised Manuscript: October 27, 2011
Manuscript Accepted: October 27, 2011
Published: May 22, 2012

Citation
J. C. Ramirez-Granados, G. Paez, and M. Strojnik, "Three-dimensional reconstruction of subsurface defects using finite-difference modeling on pulsed thermography," Appl. Opt. 51, 3153-3161 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Speka, S. Mattei, M. Pilloz, and M. Ilie, “The infrared thermography control of the laser welding of amorphous polymers,” NDT & E Int. 41, 178–183 (2008). [CrossRef]
  2. E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007). [CrossRef]
  3. C. Zoecke, A. Langmeier, and W. Arnold, “Size retrieval of defects in composite material with lockin thermography,” J. Phys. USSR 214, 012093 (2010). [CrossRef]
  4. M. Strojnik and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007). [CrossRef]
  5. S. Lugin and U. Netzelmann, “A defect shape reconstruction algorithm for pulsed thermography,” NDT & E Int. 40, 220–228 (2007). [CrossRef]
  6. M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283–289 (2005). [CrossRef]
  7. G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962–3965 (1992). [CrossRef]
  8. P. Cielo, “Pulsed photothermal evaluation of layered materials,” J. Appl. Phys. 56, 230–234 (1984). [CrossRef]
  9. X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, 2001).
  10. Y. Zheng-Wei, Z. Wei, T. Gan, L. Ren-Bing, and S. Yuan-Jia, “Multi-pulse infrared thermography applied to improve defect detectability of composites,” Appl. Mechanics Mat. 58–60, 463–468 (2011). [CrossRef]
  11. C. Dapeng, W. Naiming, Z. Zheng, L. Yue, L. Xiaoxia, and Z. Cunlin, “Detection of impact damages in CFRP composites using ultrasonic burst phase thermography,” Mater. Sci. Forum 689, 282–288 (2011). [CrossRef]
  12. G. Riegert, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermogr. J. 1, 21–32 (2004).
  13. M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146–2152 (1982). [CrossRef]
  14. G. Paez and M. Strojnik, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 46, 141–145 (2004). [CrossRef]
  15. M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermogr. J. 3, 219–230 (2006). [CrossRef]
  16. S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531–535 (2002). [CrossRef]
  17. D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617–621 (2006). [CrossRef]
  18. X. Maldague and S. Marinetti, “Pulse phase infrared thermography,” J. Appl. Phys. 79, 2694–2698 (1996). [CrossRef]
  19. T. D’Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665–673 (2005). [CrossRef]
  20. V. Vavilov, D. Nesteruk, V. Shirayev, and A. Ivanov, “Some novel approaches to thermal tomography of CFRP composites,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 433–440.
  21. D. L. Balageas, “Thickness or diffusivity measurements from front-face flash experiments using the TSR (thermographic signal reconstruction) approach,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 873–880.
  22. X. P. Maldague and P. O. Moore, “Infrared and thermal testing,” in Nondestructive Testing Handbook (ASNT, 2001), Vol. 3.
  23. G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive evaluation,” Neural Comput. Applic. 6, 148–157(1997). [CrossRef]
  24. V. P. Vavilov, D. G. Kourtenkov, E. Grinzato, P. G. Bison, S. Marinetti, and C. Bressan, “Inversion of experimental data and thermal tomography using Termo.Heat and Termidge software,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 273–280.
  25. A. Degiovanni, A. Bendada, J. C. Betsale, and D. Maillet, “Analytical simulation of a multi-dimensional field produced by planar defects of any shape; application to nondestructive testing,” in Proceedings of the 2nd International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 42, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1994), pp. 253–259.
  26. V. Vavilov, X. Maldague, J. Picard, R. L. Thomas, and L. D. Favro, “Dynamic thermal tomography: new NDE technique to reconstruct inner solids structure by using multiple IR image processing,” in Review of Progress in Quantitative Nondestructive Evaluation, Proceedings of the 18th Annual Review, Vol. 11A, D. O. Thompson and D. E. Chimenti, eds. (Plenum, 1992), pp. 425–432.
  27. A. Bendada, D. Maillet, and A. Degiovanni, “Nondestructive transient thermal evaluation of laminated composites: discrimination between delaminations thickness variations and multidelaminations,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 218–223.
  28. J. C. Ramirez-Granados, G. Paez, and M. Strojnik, “Reconstruction and analysis of pulsed thermographic sequences for nondestructive testing of layered materials,” Appl. Opt. 49, 1494–1502 (2010). [CrossRef]
  29. Z. Alsaadawi and U. Netzelmann, “Spatio-temporal filtering of active thermography data for noise reduction and data compression,” in Proceedings of the 10th International Conference on Quantitative Infrared Thermography, X. P. V. Maldague, ed. (É du CAO, 2010), pp. 383–390.
  30. S. Lugin and U. Netzelmann, “An effective compression algorithm for pulsed thermography data,” NDT & E Int. 38, 485–490 (2005). [CrossRef]
  31. P. G. Berardi and G. Cuccurullo, “Data reduction in flash method thermography,” in Proceedings of the 5th International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 64, D. Balageas, J. L. Beaudoin, G. Busse, and G. M. Carlomagno, eds. (EETI, 2000), pp. 188–193.
  32. V. Vavilov, X. Maldague, B. Dufort, F. Robitaille, and J. Picard, “Thermal nondestructive testing of carbon epoxy composites: detailed analysis and data processing,” NDT & E Int. 26, 85–95 (1993). [CrossRef]
  33. V. Vavilov, P. G. Bison, C. Bressan, E. Grinzato, and S. Marinetti, “Some new ideas in dynamic thermal tomography,” in Proceedings of the 1st International Conference on Quantitative Infrared Thermography, Eurotherm Seminar 27, D. Balageas, G. Busse, and G. M. Carlomagno, eds. (EETI, 1992), pp. 259–265.
  34. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2007).
  35. J. Schlichting, C. Maierhofer, and M. Kreutzbruck, “Defect sizing by local excitation thermography,” Quant. Infrared Thermogr. J. 8, 51–63 (2011). [CrossRef]
  36. M. B. Dufour, D. Derome, and R. Zmeureanu, “Analysis of thermograms for the estimation of dimensions of cracks in building envelope,” Infrared Phys. Technol. 52, 70–78 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited