OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3236–3242

Ultrahigh-sensitivity temperature fiber sensor based on multimode interference

Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3236-3242 (2012)
http://dx.doi.org/10.1364/AO.51.003236


View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode–multimode–single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 μm) to exhibit the maximum sensitivity (2800nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of 1880pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation.

© 2012 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 5, 2011
Revised Manuscript: February 6, 2012
Manuscript Accepted: February 8, 2012
Published: May 23, 2012

Citation
Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro, "Ultrahigh-sensitivity temperature fiber sensor based on multimode interference," Appl. Opt. 51, 3236-3242 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003). [CrossRef]
  2. Q. Wang and G. Farrell, “Multimode-fiber-based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006). [CrossRef]
  3. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011). [CrossRef]
  4. A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell, “Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme,” Appl. Opt. 49, 536–541 (2010). [CrossRef]
  5. S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011). [CrossRef]
  6. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  7. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006). [CrossRef]
  8. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. L. Wa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35, 324–326 (2010). [CrossRef]
  9. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. L. Wa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36, 3425–3427 (2011). [CrossRef]
  10. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011). [CrossRef]
  11. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011). [CrossRef]
  12. J. G. Aguilar-Soto, J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic temperature sensor based on multimode interference effects,” J. Phys. 274, 012011 (2011). [CrossRef]
  13. Q. Wang, G. Farrell, and W. Yan, “Investigation on singlemode-multimode-singlemode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008). [CrossRef]
  14. W. S. Mohammed, P. W. E. Smith, and X. Gu, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004). [CrossRef]
  15. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003). [CrossRef]
  16. G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D 11, 1167–1172 (1978). [CrossRef]
  17. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6, 51–59 (1967). [CrossRef]
  18. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley, 2001), Chap. 5, pp. 165–230.
  19. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core, air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854, (2011). [CrossRef]
  20. S. T. Lee, J. Gin, V. P. N. Nampoori, C. P. G. Vallabhan, N. V. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings,” J. Opt. A 3, 355–359 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited