OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3258–3262

Distinguishing octane grades in gasoline using terahertz metamaterials

J. Li, Z. Tian, Y. Chen, W. Cao, and Z. Zeng  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3258-3262 (2012)
http://dx.doi.org/10.1364/AO.51.003258


View Full Text Article

Enhanced HTML    Acrobat PDF (813 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Distinguishing octane numbers of commercial gasoline is experimentally demonstrated by use of single split-ring resonator metamaterials functioning at terahertz frequencies. The differences in frequency-dependent absorption coefficients and refractive indices of various grades of gasoline lead to a modification in the surrounding dielectric environment and consequently the resonance properties of the planar metamaterials. This consequently enables a distinct frequency shift in the inductive-capacitive electric dipolar resonances. This paper reveals that such metamaterial arrays, as highly sensitive chemical sensors, have promising potential in petroleum industrial applications.

OCIS Codes
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Materials

History
Original Manuscript: February 13, 2012
Revised Manuscript: April 8, 2012
Manuscript Accepted: April 9, 2012
Published: May 23, 2012

Citation
J. Li, Z. Tian, Y. Chen, W. Cao, and Z. Zeng, "Distinguishing octane grades in gasoline using terahertz metamaterials," Appl. Opt. 51, 3258-3262 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3258


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009). [CrossRef]
  2. H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008). [CrossRef]
  3. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008). [CrossRef]
  4. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007). [CrossRef]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008). [CrossRef]
  6. N. Papasimakis, Z. Luo, Z. X. Shen, F. D. Angelis, E. D. Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in photonic metamaterial,” Opt. Express 18, 8353–8359 (2010). [CrossRef]
  7. X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large area metamaterials on thin membranes for large area and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94, 161113 (2009). [CrossRef]
  8. X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin substrates: design, fabrication and characterization at terahertz frequency,” Appl. Phys. Lett. 96, 011906 (2010). [CrossRef]
  9. S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Thin substrates for enhanced metamaterial sensing applications,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI31.
  10. Annual book of ASTM standards, ASTM, West Conshohocken, PA, 2000.
  11. American Society for Testing and Materials, “Standard testing method for knock characteristics of motor fuels by the research method,” ASTM D2699 (ASTM, 1985).
  12. G. E. Foder, K. B. Kohl, and R. L. Mason, “Analysis of gasoline by FT-IR spectroscopy,” Anal. Chem. 68, 23–30 (1996). [CrossRef]
  13. P. E. Flecher, W. T. Welch, S. Albin, and J. B. Cooper, “Determination of octane numbers and rapid vapor pressure in commercial gasoline using dispersive fiber-optic Raman spectroscopy,” Spectrochim. Acta A 53, 199–206 (1997). [CrossRef]
  14. D. Steers, C. Gerrard, B. Hirst, W. Sibbett, and M. J. Padgett, “Gasoline analysis and brand identification using a static Fourier transform ultraviolet spectrometer,” J. Opt. A: Pure Appl. Opt. 1, 680–684 (1999). [CrossRef]
  15. J. Kelly, C. Barlow, T. Jinguji, and J. Gallis, “Prediction of gasoline octane numbers from near-infrared spectral features in the range 660–1215 nm,” Anal. Chem. 61, 313–320 (1989). [CrossRef]
  16. M. H. Brooker and R. W. Berg, “Non-invasive spectroscopic on-line methods to measure industrial processes: a review,” presented at Green Industrial Applications of Ionic Liquids, a NATO Advanced Research Workshop, Crete, Greece, 12–16 April 2000.
  17. F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007). [CrossRef]
  18. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  19. G. Kumar, A. Cui, S. Pandey, and A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19, 1072–1080 (2011). [CrossRef]
  20. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008). [CrossRef]
  21. A. K. Azad, J. M. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006). [CrossRef]
  22. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16, 6537–6543 (2008). [CrossRef]
  23. J. Han, W. Zhang, W. Chen, L. Thamizhmani, A. K. Azad, and Z. Zhu, “Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy,” J. Phys. Chem. B 110, 1989–1993 (2006). [CrossRef]
  24. S. Sree Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94, 09118 (2009). [CrossRef]
  25. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited