OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3305–3312

Wide-field, surface-sensitive four-wave mixing microscopy of nanostructures

Yong Wang, Xuejun Liu, Aaron R. Halpern, Kyunghee Cho, Robert M. Corn, and Eric O. Potma  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3305-3312 (2012)
http://dx.doi.org/10.1364/AO.51.003305


View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a wide-field four-wave mixing (FWM) microscope with imaging characteristics optimized for examining nanostructures. The microscope employs surface-plasmon polariton (SPP) excitation in a gold film to achieve surface-sensitive imaging conditions. The SPP surface fields boost the FWM efficiency by 2 orders of magnitude relative to the excitation efficiency of the evanescent fields at a bare glass surface. We demonstrate two excitation geometries that completely suppress the electronic FWM response of the metal film while allowing the far-field detection of FWM radiation from nanostructures at the interface. We obtained wide-field FWM images from individual carbon nanotubes and nanoclusters of neocyanine molecules at image acquisition times of 1 s, demonstrating the potential for background free, surface-enhanced FWM imaging of nanomaterials.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 13, 2012
Manuscript Accepted: March 14, 2012
Published: May 24, 2012

Citation
Yong Wang, Xuejun Liu, Aaron R. Halpern, Kyunghee Cho, Robert M. Corn, and Eric O. Potma, "Wide-field, surface-sensitive four-wave mixing microscopy of nanostructures," Appl. Opt. 51, 3305-3312 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Adv. Opt. Photon. 3, 1–52 (2011). [CrossRef]
  2. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008). [CrossRef]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). [CrossRef]
  4. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef]
  5. H. Kim, T. Sheps, P. G. Collins, and E. O. Potma, “Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy,” Nano Lett. 9, 2991–2995 (2009). [CrossRef]
  6. Y. Jung, L. Tong, A. Tanaudommongkon, J. X. Cheng, and C. Yang, “In vitro and in vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009). [CrossRef]
  7. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989). [CrossRef]
  8. R. M. Corn and D. A. Higgens, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94, 107–125 (1994). [CrossRef]
  9. S. A. Maier, ed., Plasmonics: Fundamentals and Applications (Springer, 2007).
  10. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  11. D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977). [CrossRef]
  12. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  14. J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425–441 (2004). [CrossRef]
  15. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008). [CrossRef]
  16. H. Chew, D. S. Wang, and M. Kerker, “Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres,” J. Opt. Soc. Am. B 1, 56–66 (1984). [CrossRef]
  17. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles,” J. Raman Spectrosc. 34, 651–654 (2003). [CrossRef]
  18. T. W. Koo, S. Chan, and A. A. Berlin, “Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering,” Opt. Lett. 30, 1024–1026 (2005). [CrossRef]
  19. V. Namboodiri, M. Namboodiri, G. I. Cava-Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56, 9–12 (2011). [CrossRef]
  20. C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011). [CrossRef]
  21. R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011). [CrossRef]
  22. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polariton by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008). [CrossRef]
  23. J. Renger, R. Quidant, N. V. Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave-mixing,” Phys. Rev. Lett. 103, 266802 (2009). [CrossRef]
  24. J. Renger, R. Quidant, N. V. Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave-mixing,” Phys. Rev. Lett. 104, 046803 (2010). [CrossRef]
  25. S. Palomba, S. Zhang, Y. Park, G. Bratal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2012). [CrossRef]
  26. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 43, 946–949 (1979). [CrossRef]
  27. X. Liu, Y. Wang, and E. O. Potma, “Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons,” Opt. Lett. 36, 2348–2350(2011). [CrossRef]
  28. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984). [CrossRef]
  29. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  30. T. Funantsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, “Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution,” Nature 374, 555–559 (1995). [CrossRef]
  31. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14, 9307–9316 (2006). [CrossRef]
  32. R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, N. S. Chang, C. H. Chang, and S. J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17, 5987–5997 (2009). [CrossRef]
  33. R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “Second harmonic generation at thin film silver electrodes via surface polaritons,” J. Chem. Phys. 81, 4127–4132 (1984). [CrossRef]
  34. C. Qian, T. S. Velinov, M. C. Pitter, and M. G. Somekh, “Surface plasmon-assisted widefield non-linear imaging of gold structures,” J. Microsc. 229, 6–11 (2008). [CrossRef]
  35. C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84, 816–818 (2004). [CrossRef]
  36. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination,” Opt. Lett. 32, 1941–1943 (2007). [CrossRef]
  37. A. Jesacher, C. Roider, S. Khan, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Contrast enhancement in widefield CARS microscopy by tailored phase-matching using a spatial light modulator,” Opt. Lett. 36, 2245–2247 (2011). [CrossRef]
  38. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002). [CrossRef]
  39. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003). [CrossRef]
  40. J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited