OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3329–3337

Gradual tilting exposure photo and nano lithography technique

Z. Kolahdouz, J. Koohsorkhi, M. A. Cheraghi, M. Saviz, and S. Mohajerzadeh  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3329-3337 (2012)
http://dx.doi.org/10.1364/AO.51.003329


View Full Text Article

Enhanced HTML    Acrobat PDF (2332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a novel tilting exposure photolithography (TEL) technique where gradual pattern displacement is employed to achieve high-resolution features over large areas with reasonable exposure times. A linear array with features of the order of 100 nm has been realized using this technique with standard blue-light LED sources. TEL can be useful in the visible and ultraviolet spectra to create two-dimensional periodic structures. The created structures include the nanometric array of spots and lines. The proposed technique can be used as a writing method where complex features can be generated by moving the sample-holding leading to serpentine nanometric linear arrays.

© 2012 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(110.5220) Imaging systems : Photolithography
(220.3740) Optical design and fabrication : Lithography
(220.4830) Optical design and fabrication : Systems design
(110.4235) Imaging systems : Nanolithography

ToC Category:
Imaging Systems

History
Original Manuscript: November 29, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: February 1, 2012
Published: May 25, 2012

Citation
Z. Kolahdouz, J. Koohsorkhi, M. A. Cheraghi, M. Saviz, and S. Mohajerzadeh, "Gradual tilting exposure photo and nano lithography technique," Appl. Opt. 51, 3329-3337 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Lucas, S. Postnikov, C. Henderson, and S. Hector, “Lithography: Concepts, Challenges and Prospects,” in Nano and Giga Challenges in MicroelectronicsJ. Greer, A. Korkin, and J. Labanowski, eds (Elsevier, 2003).
  2. K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, and H. Sewell, “Status and critical challenges for 157 nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004). [CrossRef]
  3. E. Sarantopoulou, A. C. Cefalas, P. Argitis, and E. Gogolides, “Photoresist materials for 157 nm photolithography,” Mater. Sci. Eng. C, 15, 159–161 (2001). [CrossRef]
  4. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics 38 (1965).
  5. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices 29, 1828–1836 (1982). [CrossRef]
  6. A. Fernandez and D. W. Phillion, “Effects of phase shifts on four-beam interference patterns,” Appl. Opt. 37, 473–478 (1998). [CrossRef]
  7. T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography,” Microelectron. Eng. 57–58, 117–135 (2001). [CrossRef]
  8. M. Chaker, S. Boily, B. Lafontaine, J. C. Kieffer, and H. Pepin, “X-ray wavelength optimization of the laser plasma X-ray lithography source,” Microelectron. Eng. 10, 91–105 (1990). [CrossRef]
  9. L. A. Hackel, R. J. Beach, C. B. Dane, and L. E. Zapata, “Laser driver for soft-x-ray projection lithography,” Appl. Opt. 32, 6914–6919 (1993). [CrossRef]
  10. A. Ulmann, An Introduction to Ultrathin Organic Films(Academic, 1991).
  11. B. Pignataro, L. Sardone, and G. Marletta, “From micro to nanometric scale patterning by Langmuir—Blodgett technique,” Mater. Sci. Eng. C 22, 177–181 (2002). [CrossRef]
  12. L. K. White, “Contact hole imaging characteristics from projection lithography,” Appl. Opt. 26, 2334–2341 (1987). [CrossRef]
  13. K. Ronse, “Optical lithography: a historical perspective,” C. R. Phys. 7, 844–857 (2006). [CrossRef]
  14. B. J. Lin, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006). [CrossRef]
  15. M. van den Brink, H. Jasper, S. D. Slonaker, P. Wijnhoven, and F. Klaassen, “Step-and-scan and step-and-repeat: a technology comparison,” Proc. SPIE 2726, 734–753 (1996). [CrossRef]
  16. H. L. Chen, W. Fan, T.-J. Wang, F.-H. Ko, R.-S. Zhai, C.-K. Hsu, and T.-J. Chuang, “Optical-gradient antireflective coatings for 157 nm optical lithography applications,” Appl. Opt. 43, 2141–2145 (2004).
  17. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and P. F. Nealey, “Sub-50 nm period patterns with EUV interference lithography,” Microelectron. Eng. 67–68, 56–62 (2003). [CrossRef]
  18. C. A. Mack, “Seeing double,” IEEE Spectrum 45, 46–51 (2008). [CrossRef]
  19. R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning lithography,” Proc. SPIE 7488, 1–11(2009). [CrossRef]
  20. M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sens. Actuat. A 111, 14–20 (2004). [CrossRef]
  21. J. W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation,” Lab Chip 10, 783–788 (2010). [CrossRef]
  22. M. Qi and H. I. Smith, “Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique,” J. Vac. Sci. Technol. B 202991–2994 (2002). [CrossRef]
  23. Y. Komijani, N. Izadi, B. Khadem-Hosseinieh, and S. Mohajerzadeh “Ultraviolet assisted 3-D microstructures on PET,” IEEE Sens. J. 6, 851–853 (2006). [CrossRef]
  24. S. Lee, J. R. Byers, K. Jen, P. Zimmerman, B. Rice, N. J. Turro, and C. G. Willson, “An analysis of double exposure lithography options,” Proc. SPIE6924 (2008). [CrossRef]
  25. A. Schmidt, W. Ehrfeld, H. Lehr, L. Miller, F. Reuther, M. Schmidt, and T. Zetterer, “Aligned double exposure in deep X-ray lithography,” Microelectron. Eng. 30, 235–238 (1996). [CrossRef]
  26. C. A. Mack, “The optical behavior of pellicles,” Microlithogr. World 16, 10–11 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited