OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3387–3396

Design and numerical simulation of an optofluidic pressure sensor

Majid Ebnali-Heidari, Morteza Mansouri, Saeed Mokhtarian, and Mohammed Kazem Moravvej-Farshi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3387-3396 (2012)
http://dx.doi.org/10.1364/AO.51.003387


View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical design procedure for an all-optical compact sensor by means of integrating the optofluidic switch polymer interferometers to measure the microfluidic air pressure and flow rate. The design is based on a flexible air gap optical cavity that can generate an interference pattern when illuminated by a monochromatic light. The optical interference pattern directly depends on the pressure. In our numerical simulations, we take the effects of fluid flow rate, solid deformation, and the light interference into account. We use the beam propagation method for simulating the optics and the finite element method for simulating the mechanics. The significance of the proposed sensor lies with its low power consumption, compactness, low cost, and short length. This sensor can operate under pressure range of 060±6%Pa at a constant temperature of 20 °C.

© 2012 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4880) Optical design and fabrication : Optomechanics
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 21, 2011
Revised Manuscript: February 19, 2012
Manuscript Accepted: March 6, 2012
Published: May 30, 2012

Citation
Majid Ebnali-Heidari, Morteza Mansouri, Saeed Mokhtarian, and Mohammed Kazem Moravvej-Farshi, "Design and numerical simulation of an optofluidic pressure sensor," Appl. Opt. 51, 3387-3396 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Urban, J. Kadlec, R. Vlach, and R. Kuchta, “Design of a pressure sensor based on optical fiber Bragg grating lateral deformation,” Sensors 10, 11212–11225 (2010). [CrossRef]
  2. J.-W. Choi, A. Pu, and D. Psaltis, “Optical detection of asymmetric bacteria utilizing electro orientation,” Opt. Express 14, 9780–9785 (2006). [CrossRef]
  3. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  4. P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry-Pérot polymer film interferometer,” Electron. Lett 33, 801–803 (1997). [CrossRef]
  5. H. Dooyoung, Y. Euisik, and H. Songcheol, “An optomechanical pressure sensor using multimode interface couplers,” J. Appl. Phys. 38, 2664–2668 (1999). [CrossRef]
  6. I. Mckenzie and N. Karafolas, “Fiber-optic sensing in space structures: the experience of the European Space Agency,” Proc. SPIE 5855, 262 (2005). [CrossRef]
  7. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114(2007). [CrossRef]
  8. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid 4, 3–16 (2008). [CrossRef]
  9. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  10. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  11. X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94, 241109 (2009). [CrossRef]
  12. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94, 051117 (2009). [CrossRef]
  13. C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94, 231114 (2009). [CrossRef]
  14. M. H. Bitrafan, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for post-fabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration,” Appl. Opt. 50, 2622–2627 (2011). [CrossRef]
  15. S. Bakhshi, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration,” Appl. Opt. 50, 4048–4053 (2011). [CrossRef]
  16. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1×4 switch,” Opt. Express 16, 13499–13508 (2008). [CrossRef]
  17. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007). [CrossRef]
  18. C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. USA 102, 14960–14963 (2005). [CrossRef]
  19. D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7, 1791–1799 (2007). [CrossRef]
  20. S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A 136, 69–79 (2007). [CrossRef]
  21. M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76, 895–899 (2004). [CrossRef]
  22. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113–116(2000). [CrossRef]
  23. W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96, 081101 (2010). [CrossRef]
  24. W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express 18, 16561–16566 (2010).
  25. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606 (2010).
  26. R. W. Fox, A. T. McDonald, and P. J. Pritchard, Introduction to Fluid Mechanics, 6th ed. (Wiley, 2004).
  27. S. Timoshenko, Theory of Elasticity, 2nd ed. (McGraw-Hill, 1951).
  28. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation (Wiley, 2001).
  29. R. Sonntag, C. Borgnakke, and G. Van Wylen, Fundamentals of Thermodynamics, 6th ed. (Wiley, 2003).
  30. J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed. (McGraw-Hill, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited