OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3461–3469

Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics

Jianjun Yang, Tao Zhang, Hao Yang, and Huabei Jiang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 16, pp. 3461-3469 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a multispectral continuous-wave diffuse optical tomography (DOT) system that can be used for in vivo three-dimensional (3-D) imaging of seizure dynamics. Fast 3-D data acquisition is realized through a time multiplexing approach based on a parallel lighting configuration—our system can achieve 0.12 ms per source per wavelength and up to a 14 Hz sampling rate for a full set of data for 3-D DOT image reconstruction. The system is validated using both static and dynamic tissue-like phantoms. An initial in vivo experiment using a rat model of seizure is also demonstrated.

© 2012 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.3080) Imaging systems : Infrared imaging
(110.6960) Imaging systems : Tomography

ToC Category:
Imaging Systems

Original Manuscript: January 13, 2012
Revised Manuscript: March 9, 2012
Manuscript Accepted: March 9, 2012
Published: May 31, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Jianjun Yang, Tao Zhang, Hao Yang, and Huabei Jiang, "Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics," Appl. Opt. 51, 3461-3469 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011). [CrossRef]
  2. J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78, 083706 (2007). [CrossRef]
  3. E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, and M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011). [CrossRef]
  4. H. Atsumori, M. Kiguchi, T. Katura, T. Funane, A. Obata, H. Sato, T. Manaka, M. Iwamoto, A. Maki, and H. Koizumi, “Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system,” J. Biomed. Opt. 15, 046002 (2010). [CrossRef]
  5. S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15, 016006 (2010). [CrossRef]
  6. A. Gibson, T. Austin, N. Everdell, M. Schweiger, S. Arridge, J. Meek, J. Wyatt, D. Delpy, and J. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” NeuroImage 30, 521–528 (2006). [CrossRef]
  7. B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” NeuroImage 49, 568–577 (2010). [CrossRef]
  8. C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19, 18636–18644 (2011). [CrossRef]
  9. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125–1144 (2006). [CrossRef]
  10. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1, 324–336 (2010). [CrossRef]
  11. B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” NeuroImage 59, 2529–2538 (2011).
  12. E. Watanabe, Y. Nagahori, and Y. Mayanagi, “Focus diagnosis of epilepsy using near‐infrared spectroscopy,” Epilepsia 43, 50–55 (2002). [CrossRef]
  13. N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS‐measured oxy‐and deoxyhemoglobin changes associated with EEG spike‐and‐wave discharges in children,” Epilepsia 49, 1871–1880 (2008). [CrossRef]
  14. D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2011). [CrossRef]
  15. Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008). [CrossRef]
  16. D. Piao and B. W. Pogue, “Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source,” J. Biomed. Opt. 12, 014016 (2007). [CrossRef]
  17. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007). [CrossRef]
  18. C. J. Soraghan, “Development of a versatile multichannel CWNIRS instrument for optical brain-computer interface applications,” Ph.D thesis (National University of Ireland, 2010).
  19. C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Optics A: Pure Appl. Opt. 6, 844–852 (2004). [CrossRef]
  20. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000). [CrossRef]
  21. H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000). [CrossRef]
  22. H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).
  23. A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45, 4747–4755 (2006). [CrossRef]
  24. A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, Part 1: Gypercapnia,” J. Biomed. Opt. 9, 1046–1062(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited