OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3508–3518

Self-consistent performance modeling for dual band MIS UV photodetectors based on Si/SiO2 multilayer structure

A. Rostami, M. Leilaeioun, S. Golmmohamadi, and H. Rasooli Saghai  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3508-3518 (2012)
http://dx.doi.org/10.1364/AO.51.003508


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present a self-consistent theoretical model for a metal-insulator semiconductor (MIS) dual band ultraviolet (UV) photodetector with a modified structure implying an arbitrarily defined insulating potential barrier as its active region. Utilizing our proposed model, the dark and photocurrent density-voltage (JV) characteristics of MIS UV photodetectors with multi-quantum wells of silicon (MQWs) are calculated. We demonstrate that dark current is reduced in the suggested structure, because the electron-tunneling probability becomes unity at energies coincident with the peak detection wavelength. This is due to the resonant tunneling and decreases at energies that are significantly smaller than this optimum value. In consequence, the number of carriers contributing to the dark current, which have a broad energy distribution at high temperatures, will decrease. It is also shown that the designed structure could detect two individual UV wavelengths, simultaneously. The width of each Si quantum well has been considered at around 1.2 nm, in order to observe these two absorption peaks in the middle and near UV regions of photon spectrum (about 365 nm, 175 nm).

© 2012 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.7190) Detectors : Ultraviolet
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Detectors

History
Original Manuscript: October 21, 2011
Revised Manuscript: December 30, 2011
Manuscript Accepted: January 17, 2012
Published: May 31, 2012

Citation
A. Rostami, M. Leilaeioun, S. Golmmohamadi, and H. Rasooli Saghai, "Self-consistent performance modeling for dual band MIS UV photodetectors based on Si/SiO2multilayer structure," Appl. Opt. 51, 3508-3518 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Carrier, J. Lewis, and D. Harma-wardana, “Optical properties of structurally-relaxed Si/SiO2 superlattices: the role of bonding at interfaces,” http://arxiv.org/abs/cond-mat/0111259 .
  2. T. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Phys. Rev. B 63, 195322 (2001). [CrossRef]
  3. M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82, 197–200(1999). [CrossRef]
  4. O. Nayfeh, S. Rao, and A. Smith, “Thin film silicon nanoparticle UV photodetector,” IEEE Photon. Technol. Lett. 16, 127–129 (2004). [CrossRef]
  5. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80, 661 (2002). [CrossRef]
  6. R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, “Lateral Si/SiO2 quantum well solar cells,” Appl. Phys. Lett. 92, 212108 (2008). [CrossRef]
  7. M. K. Lee, C. H. Chu, Y. H. Wang, and S. M. Sze, “1.55-μm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector,” Opt. Lett. 26, 160–162 (2001). [CrossRef]
  8. L. DeXing, L. Linhan, and J. Feng, “Electronic state and momentum matrix of H-passivated silicon nanonets: A first-principles calculation,” Phys. E 42, 1583–1589 (2010). [CrossRef]
  9. J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rolver, M. Forst, B. Berghoff, B. Spangenberg, and H. Kurz, “Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements” J. Vac. Sci. Technol. A 25, 1500 (2007). [CrossRef]
  10. L. Pavesi and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley-VCH, 2010).
  11. K. Imakita, M. Fujii, T. Nakanuro, S. Miura, E. Takeda, and S. Hayashi, “Enhancement of radiative recombination rate of excitons in Si nanocrystals on Au Film,” Jpn. J. Appl. Phys. 45, 6132–6136 (2006). [CrossRef]
  12. K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett. 90, 253109 (2007). [CrossRef]
  13. J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett. 90, 051105 (2007). [CrossRef]
  14. C. Jiang, M. Green, and Silicon quantum dot superlattices, “Modeling of energy bands, densities of states, and mobilities for silicon tandem solarcell applications,” J. Appl. Phys. 99, 114902 (2006). [CrossRef]
  15. W. Pan, J. Lu, J. Chen, and W. Z. Shen, “Resonant tunneling characteristics in crystalline silicon/nanocrystalline silicon heterostructure diodes,” Phys. Rev. B 74, 125308 (2006). [CrossRef]
  16. A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, “Reconstruction of dependences of the tunneling current reconstruction of dependences of the tunneling current characteristics of the n+–Si–SiO2–n–Si heterostructures,” Semiconductors 41, 1117–1125 (2007). [CrossRef]
  17. A. F. J. Levi, Applied Quantum Mechanics (Cambridge University, 2006).
  18. A. Rostami, H. Baghban, and H. Rasooli Saghai, “An ultra-high level second-order nonlinear optical susceptibility in strained asymmetric GaN─AlGaN─AlN quantum wells: towards all-optical devices and systems,” Microelectron. J. 38, 900–904 (2007). [CrossRef]
  19. L. C. Lew, Y. Voon, and M. Willatzen, The K.P Method: Electronic Properties of Semiconductors (Springer, 2009).
  20. C. Flynn, D. König, M. A. Green, and G. Conibeer, “Modeling of metal—insulator—semiconductor devices featuring a silicon quantum well,” Physica E 42, 2211–2217 (2010). [CrossRef]
  21. G. Tarr, D. Pvlfrey, and D. Camporsi, “An analytic model for the MIS tunnel junction,” IEEE Trans. Electron Devices 30, 1760–1770 (1983). [CrossRef]
  22. Y. Ando and T. Itoh, “Calculation of transmission tunneling current across arbitrary potential barriers,” J. Appl. Phys. 61, 1497–1502 (1987). [CrossRef]
  23. C. Bracher, M. Kleber, and M. Riza, “Variational approach to the tunneling-time problem,” Phys. Rev. A 60, 1864–1873 (1999). [CrossRef]
  24. N. W. Ashcroft and N. D. Mermin, Solid State Physics(Philadelphia, Saunders College, 1976).
  25. M. Depas, R. L. Meirhaeghe, W. H. Laflere, and F. Cardon, “A quantitative analysis of capacitance peaks in the impedance of Al/SiOx/p–Si tunnel diodes,” Semicond. Sci. Technol. 7, 1476–1483 (1992). [CrossRef]
  26. M. F. Iskander, Electromagnetic Fields and Waves (Prentice-Hall, 1992).
  27. S. E. Laux, A. Kumar, and M. V. Fischetti, “Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge effects,” J. Appl. Phys. 95, 1695597 (2004). [CrossRef]
  28. R. Y.-F. Yip, P. Desjardins, L. Isnard, A. Ait-Ouali, H. Marchand, J. L. Brebner, J. F. Currie, and R. A. Masut, “Band alignment engineering for high speed, low drive field quantum-confined Stark effect devices,” J. Appl. Phys. 83, 1758–1769 (1998). [CrossRef]
  29. A. M. Fox, A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991). [CrossRef]
  30. G. Lasher and F. Stern, “Spontaneous and stimulated recombination radiation in semiconductors,” Phys. Rev. A 133, 553–563 (1964).
  31. H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlGaAs As multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988). [CrossRef]
  32. A. Larsson, P. A. Andrekson, S. T. Eng, and A. Yariv, “Tunable superlattice p–i–n photodetectors: characteristics. theory, and applications,” IEEE J. Quantum Electron. 24, 787–801 (1988). [CrossRef]
  33. S. G. Matsik and A. G. Perera, “Self-consistent performance modeling for dual band detectors,” J. Appl. Phys. 104, 044502 (2008). [CrossRef]
  34. S. Højfeldt and J. Mørk, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE J. Sel. Top. Quantum Electron. 8, 1265–1276 (2002). [CrossRef]
  35. A. Sakamoto and M. Sugawara, “Theoretical calculation of lasing spectra of quantum-dot Lasers: effect of homogeneous broadening of optical gain,” IEEE Photon. Technol. Lett. 12, 107–109 (2000). [CrossRef]
  36. G. Allan and C. Delerue, “Energy transfer between semiconductor nanocrystals: validity of Förster’s theory,” Phys. Rev. B 75, 1953112007. [CrossRef]
  37. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982). [CrossRef]
  38. B. F. Levine and H. Murray, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
  39. S. M. Hossain, A. Anopchenko, S. Prezioso, and L. Ferraioli, “Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device,” J. Appl. Phys. 104, 074917 (2008). [CrossRef]
  40. H. Nayfeh, R. Satish, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol. 4, 660–668 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited