OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3526–3532

Subwavelength resist patterning using interference exposure with a deep ultraviolet grating mask: Bragg angle incidence versus normal incidence

Jun Amako and Daisuke Sawaki  »View Author Affiliations

Applied Optics, Vol. 51, Issue 16, pp. 3526-3532 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interference lithography using a deep-ultraviolet (DUV) laser is instrumental in the manufacture of subwavelength patterns used at visible wavelengths. We investigated a grating mask strategy for exposure in terms of how to set and illuminate masks. To obtain high aspect ratio patterns, high fringe visibility, and high exposure uniformity are essential, and for that purpose the use of only two beams with liquid immersion is necessary but not sufficient. It needs to be addressed whether the grating should face air or liquid to achieve index matching without affecting its beam-splitting properties. Currently, the most feasible solution to produce sub-200 nm periods requires the use of a fused-silica grating under Bragg geometry (not normal incidence geometry) and filling the gap between the grating and resist with a high-index liquid.

© 2012 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(230.1950) Optical devices : Diffraction gratings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: November 28, 2011
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 6, 2012
Published: May 31, 2012

Jun Amako and Daisuke Sawaki, "Subwavelength resist patterning using interference exposure with a deep ultraviolet grating mask: Bragg angle incidence versus normal incidence," Appl. Opt. 51, 3526-3532 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Toyota, K. Katahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001). [CrossRef]
  2. X. Deng, F. Lie, J. J. Wang, P. F. Sciortino, L. Chen, and X. Liu, “Achromatic wave plates for optical pickup units fabricated by use of imprint lithography,” Opt. Lett. 30, 2614–2616 (2005). [CrossRef]
  3. V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: Fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006). [CrossRef]
  4. M. L. Shattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. Hamnett, A. M. Levin, K. S. K. Rum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF),” Opt. Eng. 30, 1590–1600 (1991). [CrossRef]
  5. T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14, 4167–4170 (1996). [CrossRef]
  6. M. Farhoud, J. Ferrera, A. J. lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999). [CrossRef]
  7. G. Futterer, W. Herbst, J. Rottstegge, M. Ferstl, M. Sebald, and J. Schwider, “Interference patterning of gratings with a period of 150 nm at a wavelength of 157 nm,” Proc. SPIE 4691, 1703–1713 (2002). [CrossRef]
  8. Y. Bourgin, Y. Jourlin, O. Parriaux, A. Talneau, S. Tonchev, C. Veillas, P. Karvinen, N. Passilly, A. R. MdZain, R. M. DeLaRue, J. VanErps, and D. Troadec, “100 nm period grating by high-index phase-mask immersion lithography,” Opt. Express 18, 10557–10566 (2010). [CrossRef]
  9. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  10. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999). [CrossRef]
  11. M. G. Moharam and T. K. Gayload, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  12. D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F1–F9 (2007). [CrossRef]
  13. Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application high refractive index fluid to KrF-immersion lithography,” Proc. SPIE 6153, 61531W1–W9 (2006). [CrossRef]
  14. E. Gamet, A. V. Tishchenko, and O. Parriaux, “Cancellation of the zero order in a phase mask by mode interplay in a high index contrast binary grating,” Appl. Opt. 46, 6719–6726 (2007). [CrossRef]
  15. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927–929 (2000). [CrossRef]
  16. T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004). [CrossRef]
  17. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, and J. D. Park, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008). [CrossRef]
  18. J. Amako, D. Sawaki, and E. Fujii, “High-efficiency diffractive beam splitters surface-structured on submicrometer scale using deep-UV interference lithography,” Appl. Opt. 48, 5105–5113 (2009). [CrossRef]
  19. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100, 891–896 (2010). [CrossRef]
  20. S. M. Kim, W. Zhang, and B. T. Cunningham, “Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy,” Opt. Express 18, 4300–4309 (2010). [CrossRef]
  21. T. Miyamatsu, Y. Wang, M. Shima, S. Kusumoto, T. Chiba, H. Nakagawa, K. Hieda, and T. Shimokawa, “Material design for immersion lithography with high refractive index fluid (HIF),” Proc. SPIE 5753, 10–19 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited