OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3675–3683

Resonant scattering and absorption in the titanate-based nanoplatelet dispersions in near ultraviolet region

Dmitry A. Zimnyakov, Olga V. Ushakova, Alexander V. Gorokhovsky, Elena V. Tretyachenko, Elena A. Isaeva, Anna A. Isaeva, and Alexander B. Pravdin  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3675-3683 (2012)
http://dx.doi.org/10.1364/AO.51.003675


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extinction enhancement and nonlinear near-resonant absorption of potassium polytitanate nanoplatelets were experimentally studied in the near-UV region. Phenomenological models such as the one-oscillator Lorentz model for dielectric function and the two-level model with the depleted ground state were used to interpret the experimental data. The introduced model parameters demonstrate the adequately high sensitivity to variations in nanoplatelet morphology and chemical environment.

© 2012 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(290.2200) Scattering : Extinction
(290.5850) Scattering : Scattering, particles
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: February 1, 2012
Revised Manuscript: March 17, 2012
Manuscript Accepted: March 19, 2012
Published: June 1, 2012

Citation
Dmitry A. Zimnyakov, Olga V. Ushakova, Alexander V. Gorokhovsky, Elena V. Tretyachenko, Elena A. Isaeva, Anna A. Isaeva, and Alexander B. Pravdin, "Resonant scattering and absorption in the titanate-based nanoplatelet dispersions in near ultraviolet region," Appl. Opt. 51, 3675-3683 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-16-3675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  2. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009). [CrossRef]
  3. R. C. Polson and Z. M. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005). [CrossRef]
  4. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Quantitative analysis of several random lasers,” Opt. Commun. 278, 110–113 (2007). [CrossRef]
  5. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photon. 5, 615–617 (2011). [CrossRef]
  6. C. J. S. de Matos, L. de, S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007). [CrossRef]
  7. Z.-Z. Gu, S. Kubo, W. Quan, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, “Varying the optical stop band of a three-dimensional photonic crystal by refractive index control,” Langmuir 17, 6751–6753 (2001). [CrossRef]
  8. Y. Kurata, O. Sugihara, T. Kaino, K. Komatsu, and N. Kambe, “Thermo-optic controllable hybrid photonic polymers containing inorganic nanoparticles,” J. Opt. Soc. Am. B 26, 2377–2381 (2009). [CrossRef]
  9. S. Colodrero, M. E. Calvo, and H. Míguez, “Photon management in dye sensitized solar cells,” in Solar Energy, R. D. Rugescu, ed. (INTECH, 2010), pp. 413–432.
  10. S. J. Limmer, T. P. Chou, and G. Cao, “Formation and optical properties of cylindrical gold nanoshells on silica and titania nanorods,” J. Phys. Chem. B 107, 13313–13318 (2003). [CrossRef]
  11. L. Bechger, A. F. Koenderink, and W. L. Vos, “Emission spectra and lifetimes of R6G dye in silica-coated titania powder,” Langmuir 18, 2444–2447 (2002). [CrossRef]
  12. M. P. L. Wertz, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, “Titanium dioxide-polymer core-shell particle dispersions as electronic inks for electrophoretic displays,” Chem. Mater. 20, 1292–1298 (2008). [CrossRef]
  13. L. F. Hakim, D. M. King, Y. Zhou, C. J. Gump, S. M. George, and A. W. Weimer, “Nanoparticle coating for advanced optical, mechanical, and rheological properties,” Adv. Funct. Mater. 17, 3175–3181 (2007). [CrossRef]
  14. J. Chen, Z. Hua, Y. Yan, A. A. Zakhidov, R. H. Baughman, and L. Xu, “Template synthesis of ordered arrays of mesoporous titania spheres,” Chem. Commun. 46, 1872–1874 (2010). [CrossRef]
  15. A. F. Demirörs, A. Jannasch, P. D. J. van Oostrum, E. Schäffer, A. Imhof, and A. van Blaaderen, “Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence,” Langmuir 27, 1626–1634 (2011). [CrossRef]
  16. X. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, and D. Golberg, “Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells,” J. Am. Chem. Soc. 133, 19102–19109 (2011). [CrossRef]
  17. A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,” J. Phys. D 38, 2564–2570 (2005). [CrossRef]
  18. S. Sato, and T. Kadowaki, “Photocatalytic activities of metal oxide semiconductors for oxygen isotope exchange and oxidation reactions,” J. Catal. 106, 295–300 (1987). [CrossRef]
  19. Z. Peilin, L. Xiangwen, Y. Shu, and S. Tsugio, “Enhanced visible-light photocatalytic activity in K0.81Ti1.73Li0.27O4/TiO2−xNy sandwich-like composite,” Appl. Catal. B Env. 93, 299–303 (2010). [CrossRef]
  20. J. Park, “Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers,” J. Alloys Compd. 492, L57–L60 (2010). [CrossRef]
  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  22. A. Lagendijk, J. G. Rivas, A. Imhof, F. J. P. Schuurmans, and R. Sprik, “Propagation of light in disordered semiconductor materials,” in Proceedings of the NATO ASI Photonic Crystals and Light Localization in the 21st Century (2001), pp. 447–473.
  23. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997). [CrossRef]
  24. M. Feng, H. Zhang, and L. Miao, “Facile solubilization of titanate nanobelts for nonlinear optical investigations,” Nanotechnology 21, 185707 (2010). [CrossRef]
  25. K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009). [CrossRef]
  26. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of BaTiO3 and SrTiO3 nanoparticles,” J. Opt. Soc. Am. B 25, 325–333 (2008). [CrossRef]
  27. H. K. Yu, G.-R. Yi, J.-H. Kang, Y.-S. Cho, V. N. Manoharan, D. J. Pine, and S.-M. Yang, “Surfactant-assisted synthesis of uniform titania microspheres and their clusters,” Chem. Mater. 20, 2704–2710 (2008). [CrossRef]
  28. T. Sanchez-Monjaras, A. V. Gorokhovsky, and J. I. Escalante-Garcia, “Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio,” J. Am. Ceram. Soc. 91, 3058–3065 (2008). [CrossRef]
  29. T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, “Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate pairwise association of nanosheets and dynamic reassembling process initiated from it,” J. Am. Chem. Soc. 118, 8329–8335 (1996). [CrossRef]
  30. T. Nakato, Y. Yamashita, and K. Kuroda, “Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate,” Thin Solid Films 495, 24–28 (2006). [CrossRef]
  31. R. A. Ganeev and T. Usmanov, “Nonlinear-optical parameters of various media,” Quantum Electron. 37, 605–622 (2007). [CrossRef]
  32. K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, “Swelling, intercalation and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate,” J. Solid State Chem. 182, 2997–3002 (2009). [CrossRef]
  33. B. Xue, H. Li, L. Zhang, and J. Peng, “Electrochromic properties and self-assembled nanoparticle multilayer films,” Thin Solid Films 518, 6107–6112 (2010). [CrossRef]
  34. Y. Ide and M. Ogawa, “Preparation and some properties of organically modified layered alkali titanates with alkylmethoxysilanes,” J. Colloid Interf. Sci. 296, 141–149 (2006). [CrossRef]
  35. T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, and M. Watanabe, “A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties,” Chem. Mater. 10, 4123–4128 (1998). [CrossRef]
  36. R. Besseling, “Exfoliated nanosheets from lepidocrocite type layered titanates,” master’s thesis (University of Twente, The Netherlands, 2009).
  37. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  38. M. Samos, A. Samos, B. Luther-Davies, H. Reisch, and U. Scherf, “Saturable absorption in poly(indenofluorene): a picket-fence polymer,” Opt. Lett. 23, 1295–1297 (1998). [CrossRef]
  39. http://www.ioffe.ru/SVA/NSM/nk/Oxides/Gif/ tio2.gif .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited