OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3707–3717

Parametric uncertainty in nanoscale optical dimensional measurements

James Potzick and Egon Marx  »View Author Affiliations


Applied Optics, Vol. 51, Issue 17, pp. 3707-3717 (2012)
http://dx.doi.org/10.1364/AO.51.003707


View Full Text Article

Enhanced HTML    Acrobat PDF (1209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Image modeling establishes the relation between an object and its image when an optical microscope is used to measure the dimensions of an object of size comparable to the illumination wavelength. It accounts for the influence of all of the parameters that can affect the image and relates the apparent feature width (FW) in the image to the true FW of the object. The values of these parameters, however, have uncertainties, and these uncertainties propagate through the model and lead to parametric uncertainty in the FW measurement, a key component of the combined measurement uncertainty. The combined uncertainty is required in order to decide if the result is adequate for its intended purpose and to ascertain if it is consistent with other results. The parametric uncertainty for optical photomask measurements derived using an edge intensity threshold approach has been described previously; this paper describes an image library approach to this issue and shows results for optical photomask metrology over a FW range of 10 nm to 8 µm using light of wavelength 365 nm. The principles will be described; a one-dimensional image library will be used; the method of comparing images, along with a simple interpolation method, will be explained; and results will be presented. This method is easily extended to any kind of imaging microscope and to more dimensions in parameter space. It is more general than the edge threshold method and leads to markedly different uncertainties for features smaller than the wavelength.

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3940) Instrumentation, measurement, and metrology : Metrology
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(290.3700) Scattering : Linewidth

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 13, 2011
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 30, 2012
Published: June 4, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
James Potzick and Egon Marx, "Parametric uncertainty in nanoscale optical dimensional measurements," Appl. Opt. 51, 3707-3717 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-17-3707

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited