OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3731–3743

Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay

Yuan Ji, Feng Ran, Weigui Ji, Meihua Xu, Zhangjing Chen, Yuxi Jiang, and Weixin Shen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 17, pp. 3731-3743 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The digital pixel driving scheme makes the organic light-emitting diode (OLED) microdisplays more immune to the pixel luminance variations and simplifies the circuit architecture and design flow compared to the analog pixel driving scheme. Additionally, it is easily applied in full digital systems. However, the data bottleneck becomes a notable problem as the number of pixels and gray levels grow dramatically. This paper will discuss the digital driving ability to achieve kilogray-levels for megapixel displays. The optimal scan strategy is proposed for creating ultra high gray levels and increasing light efficiency and contrast ratio. Two correction schemes are discussed to improve the gray level linearity. A 1280×1024×3 OLED-on-silicon microdisplay, with 4096 gray levels, is designed based on the optimal scan strategy. The circuit driver is integrated in the silicon backplane chip in the 0.35 μm 3.3 V–6 V dual voltage one polysilicon layer, four metal layers (1P4M) complementary metal-oxide semiconductor (CMOS) process with custom top metal. The design aspects of the optimal scan controller are also discussed. The test results show the gray level linearity of the correction schemes for the optimal scan strategy is acceptable by the human eye.

© 2012 Optical Society of America

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(230.6046) Optical devices : Smart pixel systems
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 11, 2012
Revised Manuscript: April 11, 2012
Manuscript Accepted: April 11, 2012
Published: June 4, 2012

Yuan Ji, Feng Ran, Weigui Ji, Meihua Xu, Zhangjing Chen, Yuxi Jiang, and Weixin Shen, "Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay," Appl. Opt. 51, 3731-3743 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kimmel, J. Hautanen, and T. Levola, “Display technologies for portable communication devices,” Proc. IEEE 90, 581–590 (2002). [CrossRef]
  2. J. W. Pan, S. H. Tu, C. M. Wang, and J. Y. Chang, “High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system,” Appl. Opt. 47, 3406–3414 (2008). [CrossRef]
  3. C. Grossmann, S. Riehemann, G. Notni, and A. Tunnermann, “OLED-based pico-projection system,” J. Soc. Inf. Disp. 18, 821–826 (2010). [CrossRef]
  4. R. Zhang and H. Hua, “Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays,” Appl. Opt. 47, 2888–2896 (2008). [CrossRef]
  5. D. W. Cheng, Y. T. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009). [CrossRef]
  6. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993). [CrossRef]
  7. P. T. Kazlas, K. M. Johnson, and D. J. McKnight, “Miniature liquid-crystal-on-silicon display assembly,” Opt. Lett. 23, 972–974 (1998). [CrossRef]
  8. D. Vettese, “Microdisplays liquid crystal on silicon,” Nat. Photon. 4, 752–754 (2010). [CrossRef]
  9. J. E. Wolfe and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels,” Appl. Opt. 45, 1688–1703 (2006). [CrossRef]
  10. C.-D. Liao and J.-C. Tsai, “The evolution of MEMS displays,” IEEE Trans. Ind. Electron. 56, 1057–1065 (2009). [CrossRef]
  11. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998). [CrossRef]
  12. L. J. Hornbeck, “Combining digital optical MEMS, CMOS and algorithms for unique display solutions,” in Electron Devices Meeting (IEEE International, 2007), pp. 17–24.
  13. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirroir device (DMD) applications,” in Moems Display and Imaging Systems, H. Urey, ed. (SPIE, 2003), pp. 14–25.
  14. W. E. Howard and O. F. Prache, “Microdisplays based upon organic light-emitting diodes,” IBM J. Res. Dev. 45, 115–127(2001). [CrossRef]
  15. G. B. Levy, W. Evans, J. Ebner, P. Farrell, M. Hufford, B. H. Allison, D. Wheeler, H. Q. Lin, O. Prache, and E. Naviasky, “An 852×600 pixel OLED-on-silicon color microdisplay using CMOS subthreshold-voltage-scaling current drivers,” IEEE J. Solid-State Circuits 37, 1879–1889 (2002). [CrossRef]
  16. D. A. Fellowes, M. V. Wood, A. R. Hastings, R. S. Draper, A. Ghosh, O. Prache, I. Wacyk, T. Ali, and I. Khayrullin, “Active matrix organic light emitting diode (AMOLED) performance and life test results,” in Head- and Helmet-Mounted Displays Xvi: Design and Applications, P. L. Marasco and P. R. Havig, eds. (SPIE, 2011).
  17. I. Wacyk, O. Prache, and A. Ghosh, “Ultra-high resolution AMOLED,” in Display Technologies and Applications for Defense, Security and Avionics V and Enhanced and Synthetic Vision, J. T. Thomas, D. D. Desjardins, J. J. Guell, and K. L. Bernier, eds. (SPIE, 2011).
  18. G. Kelly, R. Woodburn, I. Underwood, D. Burns, R. Monteith, M. Newsam, and P. Parmiter, “A full-color QVGA microdisplay using light-emitting-polymer on CMOS,” in ICECS ’06 13th IEEE International Conference on Electronics, Circuits and Systems (IEEE, 2006), pp. 760–763.
  19. V. Gohri, S. Hofmann, S. Reineke, T. Rosenow, M. Thomschke, M. Levichkova, B. Lussem, and K. Leo, “White top-emitting organic light-emitting diodes employing a heterostructure of down-conversion layers,” Org. Electron. 12, 2126–2130 (2011). [CrossRef]
  20. M. Scholles, U. Vogel, I. Underwood, G. Notni, C. Zilstorff, K. Meerholz, and G. Haas, “HYPOLED—High-performance OLED microdisplays for mobile multimedia HMD and projection applications,” in the 48th Annual SID Symposium, Seminar and Exhibition 2010, Display Week 2010 (Society for Information Display, 2010), pp. 1926–1929.
  21. U. Vogel, D. Kreye, B. Richter, G. Bunk, S. Reckziegel, R. Herold, M. Scholles, M. Torker, C. Grillberger, J. Amelung, S. T. Graupner, S. Pannasch, M. Heubner, and B. Velichkovsky, “Bi-directional OLED microdisplay for interactive see-through HMDs: Study toward integration of eye-tracking and informational facilities,” J. Soc. Inf. Disp. 17, 175–184 (2009). [CrossRef]
  22. “ http://olightek.en.alibaba.com/ ”.
  23. G. H. Xie, Q. Xue, P. Chen, C. Tao, C. M. Zhao, J. H. Lu, Z. X. Gong, T. Y. Zhang, R. Huang, H. A. Du, W. F. Xie, J. Y. Hou, Y. Zhao, and S. Y. Liu, “Highly efficient and low-cost top-emitting organic light-emitting diodes for monochromatic microdisplays,” Org. Electron. 11, 407–411 (2010). [CrossRef]
  24. B.-D. Choi, I.-S. Park, J.-S. Kim, S.-J. Lee, and B. Bae, “Image quality enhancement in AMOLED microdisplay for mobile projectors,” IEEE Trans. Consum. Electron. 57, 313–319 (2011). [CrossRef]
  25. P. Janssen, J. A. Shimizu, J. Dean, and R. Albu, “Design aspects of a scrolling color LCoS display,” Displays 23, 99–108 (2002). [CrossRef]
  26. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (John Wiley & Sons, 2006).
  27. J. L. Martinez, A. Martinez-Garcia, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48, 911–918 (2009). [CrossRef]
  28. Y. Ji, F. Ran, H.-G. Xu, W.-X. Shen, W.-G. Ji, and M.-H. Xu, “Design on AM-OLED display control ASIC with high gray scale levels,” J. Shanghai Univ. (Engl. Ed.) 15, 310–315(2011). [CrossRef]
  29. L. Svilainis, “LED brightness control for video display application,” Displays 29, 506–511 (2008). [CrossRef]
  30. M. H. Xu, “Fractal methodology research and IP core implementation for FPD greyscale controlling (in Chinese),” Doctoral dissertation (Shanghai University, 2006).
  31. Z. J. Chen, “Scan model and theory research for flat panel display (in Chinese),” Doctoral dissertation (Shanghai University, 2009).
  32. M. H. Xu, F. Ran, and Z. J. Cehn, “A novel OLED controller with fractal scan scheme,” Robot Cim-Int. Manuf. 26, 570–575(2010). [CrossRef]
  33. H. Yi, R. Hattori, and J. Kanicki, “Improved a-Si:H TFT pixel electrode circuits for active-matrix organic light emitting displays,” IEEE Trans. Electron Devices 48, 1322–1325 (2001). [CrossRef]
  34. B. J. Hak, L. Myunghee, L. J. Hoon, P. H. Su, L. C. Ju, K. J. Tae, C. C. Sik, K. H. Kwon, K. T. Jin, and C. H. Kyoon, “A current-mode display driver IC using sample-and-hold scheme for QVGA full-color AMOLED displays,” IEEE J. Solid-State Circuits 41, 2974–2982 (2006). [CrossRef]
  35. A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits 39, 1477–1486 (2004). [CrossRef]
  36. L. Banks, “High performance ferroelectric LC microdisplay,” in ASID ’99. Proceedings of the 5th Asian Symposium on Information Display (1999), 333–337.
  37. N. P. Papadopoulos, A. A. Hatzopoulos, and D. K. Papakostas, “An improved optical feedback pixel driver circuit,” IEEE Trans. Electron Devices 56, 229–235 (2009). [CrossRef]
  38. G. R. Chaji, S. Alexander, J. M. Dionne, Y. Azizi, C. Church, J. Hamer, J. Spindler, and A. Nathan, “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE International, 2010), pp. 118–119.
  39. S. Lee, J. C. Morizio, and K. M. Johnson, “Novel frame buffer pixel circuits for liquid-crystal-on-silicon microdisplays,” IEEE J. Solid-State Circuit 39, 132–139 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited