OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3744–3754

Investigation of five types of switchable retroreflector films for enhanced visible and infrared conspicuity applications

P. Schultz, B. Cumby, and J. Heikenfeld  »View Author Affiliations

Applied Optics, Vol. 51, Issue 17, pp. 3744-3754 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the physics, design, characterization, and demonstration of five viable techniques for switchable retroreflectors, including integrated electrowetting scattering, integrated and external electrowetting light valves, external liquid crystal light valve, and external liquid crystal scattering. All techniques were evaluated for use in conspicuity applications spanning wavelengths in the visible and IR (night vision). Achieved performance includes high optical efficiencies up to nearly 30% (out of a maximum 35%), visibly fast switching speeds of <100ms, low to moderate operating voltages ranging from 5 to 60 V, more than ±45deg of operation angle, and implementation with pressure-sensitive, adhesive-backed films of 0.7 to 1 mm thickness for flexibility and impact resistance. Each approach has unique strengths and weaknesses, which will also be discussed for applications ranging from commercial to military conspicuity.

© 2012 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.2090) Optical devices : Electro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(230.4110) Optical devices : Modulators
(260.3060) Physical optics : Infrared

ToC Category:
Optical Devices

Original Manuscript: February 7, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 28, 2012
Published: June 4, 2012

P. Schultz, B. Cumby, and J. Heikenfeld, "Investigation of five types of switchable retroreflector films for enhanced visible and infrared conspicuity applications," Appl. Opt. 51, 3744-3754 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12, 233–242 (2003). [CrossRef]
  2. J. B. Stewart, D. Freedman, S. Cornelissen, M. N. Horenstein, P. Woskov, and J. Tang, “Low power MEMS modulating retroreflectors for optical communication,” Libr. Acquis. Pract. Theory 7595, 759505 (2010). [CrossRef]
  3. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001). [CrossRef]
  4. W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007). [CrossRef]
  5. M. Plett, W. S. Rabinovich, R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, and W. Freeman, “Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array,” Opt. Eng. 47, 045001 (2008). [CrossRef]
  6. J. Lloyd, “A brief history of retroreflective sign face sheet materials,” http://www.rema.org.uk/pdf/history-retroreflective-materials.pdf .
  7. S. Winburn, A. Baker, and J. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227–229 (1996). [CrossRef]
  8. MinimumReflectivity.org, http://www.minimumreflectivity.org/retroreflective.asp .
  9. H. D. Eckhardt, “Simple model of corner reflector phenomena.,” Appl. Opt. 10, 1559–1566 (1971). [CrossRef]
  10. Reflexite, http://www.reflexite.com .
  11. 3m Corporation, http://www.3m.com .
  12. F. E. Nicodemus, “Directional Reflectance and Emissivity of an Opaque Surface,” Appl. Opt. 4, 767–773 (1965). [CrossRef]
  13. S. C. Pont and J. J. Koenderink, “Bidirectional reflectance distribution function of specular surfaces with hemispherical pits,” J. Opt. Soc. Am. A 19, 2456–2466 (2002). [CrossRef]
  14. A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010). [CrossRef]
  15. J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review Paper: A critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Disp. 19, 129–156 (2011). [CrossRef]
  16. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005). [CrossRef]
  17. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), p. 597.
  18. V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech, 1999), p. 366.
  19. S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006), p. 394.
  20. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19, 065029 (2009). [CrossRef]
  21. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms.,” Opt. Express 14, 6557–6563 (2006). [CrossRef]
  22. M. K. Kilaru, B. Cumby, and J. Heikenfeld, “Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection,” Appl. Phys. Lett. 94, 041108 (2009). [CrossRef]
  23. M. K. Kilaru, J. Yang, and J. Heikenfeld, “Advanced characterization of electrowetting retroreflectors.,” Opt. Express 17, 17563–17569 (2009). [CrossRef]
  24. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  25. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, 383–385 (2003). [CrossRef]
  26. B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18, 025027 (2008). [CrossRef]
  27. A. Schultz, J. Heikenfeld, H. Kang, and W. Cheng, “1000∶1 contrast ratio transmissive electrowetting displays,” J. Disp. Technol. 7, 583–585 (2011). [CrossRef]
  28. M. Schadt, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18, 127–128 (1971). [CrossRef]
  29. J. Fergason, “Display devices utilizing liquid crystal light modulation,” U.S. patent 3731986 (8May1973).
  30. M. Gu, “The world of liquid crystal displays,” http://www.personal.kent.edu/~mgu/LCD/tn.htm .
  31. G. W. Gray and S. M. Kelly, “Liquid crystals for twisted nematic display devices,” J. Mater. Chem. 9, 2037–2050 (1999). [CrossRef]
  32. Edmund Optics, “Visible linear polarizing laminated film,” http://www.edmundoptics.com/products/displayproduct.cfm?productid=1912 .
  33. S. E. Segre and V. Zanza, “Mueller calculus of polarization change in the cube-corner retroreflector.,” J. Opt. Soc. Am. A 20, 1804–1811 (2003). [CrossRef]
  34. P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986). [CrossRef]
  35. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B. G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988). [CrossRef]
  36. G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC) films,” Electron. Commun. Eng. J. 4, 91–100(1992). [CrossRef]
  37. L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39, 369–377 (2003). [CrossRef]
  38. J. L. West, “Extended temperature range polymer dispersed liquid crystal light shutters,” U.S. patent 5004323 (2April1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited