OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3832–3836

Note on the use of localized beam models for light scattering theories in spherical coordinates

Jiajie Wang and Gèrard Gouesbet  »View Author Affiliations


Applied Optics, Vol. 51, Issue 17, pp. 3832-3836 (2012)
http://dx.doi.org/10.1364/AO.51.003832


View Full Text Article

Enhanced HTML    Acrobat PDF (118 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localized beam models provide the most efficient and enlightening ways to evaluate beam shape coefficients of electromagnetic arbitrary shaped beams for use in light scattering theories. At the present time, they are valid in spherical and (circular and elliptical) cylindrical coordinates. A misuse of localized beam models in spherical coordinates recently appeared several times in the literature. We therefore present a warning to avoid the propagation of an incorrect use of localized beam models.

© 2012 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 10, 2012
Revised Manuscript: March 14, 2012
Manuscript Accepted: March 14, 2012
Published: June 7, 2012

Citation
Jiajie Wang and Gèrard Gouesbet, "Note on the use of localized beam models for light scattering theories in spherical coordinates," Appl. Opt. 51, 3832-3836 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-17-3832


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications; invited review paper,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009). [CrossRef]
  2. G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective; invited review paper,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009). [CrossRef]
  3. G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer-Verlag, 2011).
  4. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  5. G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997). [CrossRef]
  6. G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999). [CrossRef]
  7. G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011). [CrossRef]
  8. G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996). [CrossRef]
  9. G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]
  10. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  11. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  12. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
  13. A. Doicu and T. Wriedt, “Computation of the beam shape coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997). [CrossRef]
  14. G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates,” Opt. Commun. 283, 517–521, 2010. [CrossRef]
  15. T. J. Bromwich, “Electromagnetic waves,” Philos. Mag. 38, 143–164 (1919).
  16. F. E. Borgnis, “Elektromagnetische Eigenschwingungen dielektrischer Raüme,” Ann. Phys. 427, 359–384 (1939). [CrossRef]
  17. A. Angot, “Compléments de mathématiques à l’usage des ingénieurs de l’électrotechnique et des télé-communications,” Edtions de la Revue d’Optique (1952).
  18. G. Gouesbet, and G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. 13, 97–103 (1982). [CrossRef]
  19. G. Gouesbet, “Partial wave expansions and properties of axisymmetric light beams,” Appl. Opt. 35, 1543–1555 (1996). [CrossRef]
  20. G. Gouesbet, G. Grehan, and B. Maheu, “On the generalized Lorenz–Mie theory: first attempt to design a localized approximation to the computation of the coefficients gnm,” J. Opt. (Paris) 20, 31–43 (1989). [CrossRef]
  21. G. Gouesbet, G. Grehan, and B. Maheu, “A localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7 (6), 998–1007 (1990). [CrossRef]
  22. G. Gouesbet, and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  23. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999). [CrossRef]
  24. G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996). [CrossRef]
  25. G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011). [CrossRef]
  26. G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010). [CrossRef]
  27. J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234(2010). [CrossRef]
  28. G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special values of Euler angles,” Opt. Commun. 283, 3235–3243 (2010). [CrossRef]
  29. G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited