OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3837–3846

Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation

Zichen Zhang, Haining Yang, Brian Robertson, Maura Redmond, Mike Pivnenko, Neil Collings, William A. Crossland, and Daping Chu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 17, pp. 3837-3846 (2012)
http://dx.doi.org/10.1364/AO.51.003837


View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method to measure the optical response across the surface of a phase-only liquid crystal on silicon device using binary phase gratings is described together with a procedure to compensate its spatial optical phase variation. As a result, the residual power between zero and the minima of the first diffraction order for a binary grating can be reduced by more than 10 dB, from 15.98dB to 26.29dB. This phase compensation method is also shown to be useful in nonbinary cases. A reduction in the worst crosstalk by 5.32 dB can be achieved when quantized blazed gratings are used.

© 2012 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(090.0090) Holography : Holography
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 17, 2012
Manuscript Accepted: March 13, 2012
Published: June 7, 2012

Citation
Zichen Zhang, Haining Yang, Brian Robertson, Maura Redmond, Mike Pivnenko, Neil Collings, William A. Crossland, and Daping Chu, "Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation," Appl. Opt. 51, 3837-3846 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-17-3837


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Crossland, P. J. Ayliffe, and P. W. Ross, “A dyed-phase-change liquid crystal display over a MOSFET switching array,” Proc. SID 23, 15–22 (1981).
  2. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989). [CrossRef]
  3. I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, and S. C. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1992). [CrossRef]
  4. D. Armitage and D. K. Kinnell, “Miniature spatial light modulators,” Proc. SPIE 12, 158–165 (1990). [CrossRef]
  5. L. K. Cotter, T. J. Drabik, R. J. Dillon, and M. A. Handschy, “Ferroelectric liquid crystal silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990). [CrossRef]
  6. D. Armitage and D. K. Kinnell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992). [CrossRef]
  7. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256×256 liquid crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775–2784 (1994). [CrossRef]
  8. R. L. Melcher, M. Ohhata, and K. Enami, “High-information-content projection display based on reflective LC on silicon light valves,” SID Dig. 29, 25–28 (1998). [CrossRef]
  9. A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt. 47, 4793–4803 (2008). [CrossRef]
  10. T. D. Wilkinson, C. D. Henderson, D. Gil Leyva, and W. A. Crossland, “Phase modulation with the next generation of liquid crystal over silicon technology,” J. Mater. Chem. 16, 3359–3365 (2006). [CrossRef]
  11. M. L. Jepsen, “A technology rollercoaster liquid crystal on silicon,” Nat. Photon. 1, 276–277 (2007). [CrossRef]
  12. J. L. de Bougrenet de la Tocnaye and L. Dupont, “Complex amplitude modulation by use of liquid—crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997). [CrossRef]
  13. W. Crossland, I. Manolis, M. Redmond, K. Tan, T. Wilkinson, M. Holmes, T. Parker, H. Chu, J. Croucher, V. Handerek, S. Warr, B. Robertson, I. Bonas, R. Franklin, C. Stace, H. White, R. Woolley, and G. Henshall, “Holographic optical switching: the ROSES demonstrator,” J. Lightwave Technol. 18, 1845–1854 (2000). [CrossRef]
  14. N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999). [CrossRef]
  15. E. Buckley, “Holographic laser projection technology,” J. Disp. Technol. 7, 135 (2008).
  16. Boulder Nonlinear Systems, http://www.bnonlinear.com/products/index.html .
  17. Holoeye Photonics AG, http://www.holoeye.com/spatial_light_modulators-technology.html .
  18. Hamamatsu Corporation, http://sales.hamamatsu.com/en/products/solid-state-division/lcos-slm.php .
  19. Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7, 120–126 (2011). [CrossRef]
  20. R. D. Hamer and C. W. Tyler, “Analysis of visual modulation sensitivity. V. Faster visual response for g- than for r-cone pathway?,” J. Opt. Soc. Am. A 9, 1889–1904 (1992). [CrossRef]
  21. A. Valberg, Light Vision Color (Wiley, 2005).
  22. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400–6406 (2004). [CrossRef]
  23. J. Oton, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679(2007). [CrossRef]
  24. J. Goodman, Fourier Optics (Roberts, 2005).
  25. H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).
  26. E. Hallstig, “Nematic liquid crystal spatial light modulators for laser beam steering,” Ph.D. dissertation (Uppsala University, 2004).
  27. Z. Zhang, “Phase-only nematic liquid crystal on silicon devices,” Ph.D. dissertation (University of Cambridge, 2011).
  28. B. Robertson and M. Redmond, Polarimetry Measurement for PASSBACK Project (University of Cambridge, 2009).
  29. M. Redmond, Tops Project (University of Cambridge, 2009).
  30. L. Kim, S. T. Tan, T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redond, W. A. Crossland, and B. Robertson, “Dynamic holography for optical interconnections. II. Routing. holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001). [CrossRef]
  31. D. Gil-Leyva, B. Robertson, C. J. Henderson, and T. D. Wilkinson, “Cross-talk analysis in a telecentric adaptive free-space optical relay based on a spatial light modulator,” Appl. Opt. 45, 63–75 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited