OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3922–3929

Correcting the aero-optical aberration of the supersonic mixing layer with adaptive optics: concept validation

Qiong Gao, Zongfu Jiang, Shihe Yi, Wenke Xie, and Tianhe Liao  »View Author Affiliations


Applied Optics, Vol. 51, Issue 17, pp. 3922-3929 (2012)
http://dx.doi.org/10.1364/AO.51.003922


View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an adaptive optics (AO) system for correcting the aero-optical aberration of the supersonic mixing layer and test its performance with numerical simulations. The AO system is based on the measurement of distributed Strehl ratios and the stochastic parallel gradient descent (SPGD) algorithm. The aero-optical aberration is computed by the direct numerical simulation of a two-dimensional supersonic mixing layer. When the SPGD algorithm is applied directly, the AO cannot give effective corrections. This paper suggests two strategies to improve the performance of the SPGD algorithm for use in aero-optics. The first one is using an iteration process keeping finite memory, and the second is based on the frozen hypothesis. With these modifications, the performance of AO is improved and the aero-optical aberration can be corrected to some noticeable extent. The possibility of experimental implementation is also discussed.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(030.7060) Coherence and statistical optics : Turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 19, 2011
Revised Manuscript: March 29, 2012
Manuscript Accepted: April 2, 2012
Published: June 8, 2012

Citation
Qiong Gao, Zongfu Jiang, Shihe Yi, Wenke Xie, and Tianhe Liao, "Correcting the aero-optical aberration of the supersonic mixing layer with adaptive optics: concept validation," Appl. Opt. 51, 3922-3929 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-17-3922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. G. Gilbert and L. J. Otten, eds., Aero-Optical Phenomena (AIAA, 1982).
  2. E. J. Jumper and E. J. Fitzgerald, “Recent advances in aero-optics,” Prog. Aerosp. Sci. 37, 299–339 (2001). [CrossRef]
  3. R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).
  4. R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optical correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46, 2787–2795 (2008). [CrossRef]
  5. R. M. Rennie, J. P. Siegenthaler, and E. J. Jumper, “Forcing of a two-dimensional, weakly-compressed subsonic free shear layer,” AIAA paper 2006–0561 (American Institute of Aeronautics and Astronautics, 2006).
  6. C. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. Fluid Mech. 16, 365–424 (1984). [CrossRef]
  7. A. P. Freeman and H. J. Catrakis, “Direction reduction of aero-optical aberrations by large structure suppression control in turbulence,” AIAA J. 46, 2582–2590 (2008). [CrossRef]
  8. J. Seidel, S. Seigel, and T. McLaughlin, “Feedback flow control of a shear layer for aero-optical aberrations,” AIAA paper 2010-0356 (American Institute of Aeronautics and Astronautics, 2010).
  9. G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromechined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997). [CrossRef]
  10. T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999). [CrossRef]
  11. E. J. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003). [CrossRef]
  12. G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16, 2859–2866 (2008). [CrossRef]
  13. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through imaging sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974). [CrossRef]
  14. J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978). [CrossRef]
  15. T. R. O’Meara, “The multidither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977). [CrossRef]
  16. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997). [CrossRef]
  17. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. 17, 1440–1453 (2000). [CrossRef]
  18. T. Weyrauch and M. A. Vorontsov, “Dynamic wave-front distortion compensation with a 134-control-channel submillisecond adaptive system,” Opt. Lett. 27, 751–753 (2002). [CrossRef]
  19. M. Cohen, G. Cauwenberghs, and M. A. Vorontsov, “Image sharpness and beam focus VLSI sensors for adaptive optics,” IEEE Sens. J. 2, 680–690 (2002). [CrossRef]
  20. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002). [CrossRef]
  21. M. A. Vorontsov and G. W. Carhart, “Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters,” J. Opt. Soc. Am. A. 23, 2613–2622 (2006). [CrossRef]
  22. S. K. Lele, “Direct numerical simulation of compressible free shear flows,” AIAA paper 1989-0374 (American Institute of Aeronautics and Astronautics, 1989).
  23. N. D. Sandham and H. C. Yee, “A numerical study of a class of TVD schemes for compressible mixing layers,” NASA TM-102194 (NASA, 1989).
  24. S. Stanley and S. Sarkar, “Simulations of spatially developing two-dimensional shear layers and jets,” Theor. Comput. Fluid Dyn. 9, 121–147 (1997). [CrossRef]
  25. C. Pantano and S. Sarkar, “A study of compressibility effects in the high-speed turbulent shear layer using direct simulation,” J. Fluid Mech. 451, 329–371 (2002). [CrossRef]
  26. J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Taylor & Francis, 1997), Chap. 5.1.
  27. H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150, 199–238 (1999). [CrossRef]
  28. S. Pirozzoli, “Conservative hybrid compact-WENO schemes for shock-turbulence interaction,” J. Comput. Phys. 178, 81–117 (2002). [CrossRef]
  29. J. L. Steger and R. F. Warming, “Flux vector splitting of the inviscid gasdynamic equations with application to finite difference method,” J. Comput. Phys. 40, 263–293 (1981). [CrossRef]
  30. S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys. 103, 16–42 (1992). [CrossRef]
  31. C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatary shock capturing schemes,” J. Comput. Phys. 77, 439–471 (1988). [CrossRef]
  32. T. J. Poinsot and S. K. Lele, “Boundary conditions for direct simulations of compressible viscous flows,” J. Comput. Phys. 101, 104–129 (1992). [CrossRef]
  33. J. C. Spall, Introduction to Stochastic Search and Optimization (Wiley, 2003), Chap. 7.
  34. P. Piatrou and M. Roggemann, “Beaconless stochastic parallel gradient descent laser beam control: numerical experiments,” Appl. Opt. 46, 6831–6842 (2007). [CrossRef]
  35. Q. Gao, Z. F. Jiang, S. H. Yi, and Y. X. Zhao, “Optical path difference of the supersonic mixing layer,” Appl. Opt. 49, 3786–3792 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited