OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3950–3956

Compact 1×4 wavelength demultiplexer based on directional coupling of periodic dielectric waveguides

Lin Huang, Bing Chen, Yongdong Li, and Chunliang Liu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 17, pp. 3950-3956 (2012)
http://dx.doi.org/10.1364/AO.51.003950


View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact 1×4 wavelength demultiplexer is proposed based on the directional coupling of periodic dielectric waveguides for optical communication wavelengths. With appropriate optimization, the 1×4 wavelength demultiplexer can route 1130, 1310, 1490, and 1700 nm wavelengths to corresponding out ports with a transmittance of more than 95%. This provides a simple and compact demultiplexer that is expected to be applied to highly dense photonic integrated circuits.

© 2012 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: February 27, 2012
Manuscript Accepted: April 19, 2012
Published: June 8, 2012

Citation
Lin Huang, Bing Chen, Yongdong Li, and Chunliang Liu, "Compact 1×4 wavelength demultiplexer based on directional coupling of periodic dielectric waveguides," Appl. Opt. 51, 3950-3956 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-17-3950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Lifante, “Introduction to integrated photonics,” Integrated Photonics: Fundamentals (Wiley, 2003), Chap. 1, pp. 13–18.
  2. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970–1975 (2001). [CrossRef]
  3. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002). [CrossRef]
  4. F. S. Chien, Y. Hsu, W. Hsieh, and S. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004). [CrossRef]
  5. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001). [CrossRef]
  6. M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006). [CrossRef]
  7. H. Kim, I. Park, B. O. S. Park, E. Lee, and S. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12, 5625–5633 (2004). [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998). [CrossRef]
  9. P. Borel, A. Harpoh, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004). [CrossRef]
  10. J. S. Jensen, and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005). [CrossRef]
  11. S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995). [CrossRef]
  12. P. Luan, and K. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263–3272 (2006). [CrossRef]
  13. K. Lee, C. Chen, and Y. Lin, “Transmission characteristics of various bent periodic dielectric waveguides,” Opt. Quantum Electron. 40, 633–643 (2008). [CrossRef]
  14. P. Luan, and K. Chang, “Periodic dielectric waveguide beam splitter based on co-directional coupling,” Opt. Express 15, 4536–4545 (2007). [CrossRef]
  15. J. Garcia, P. Sanchis, A. Martinez, and J. Marti, “1 D periodic structures for slow-wave induced non-linearity enhancement,” Opt. Express 16, 3146–3160 (2008). [CrossRef]
  16. Y. Zhang, W. Huang, and B. Li, “Fabry-Pérot microcavities with controllable resonant wavelengths in periodic dielectric waveguides,” Appl. Phys. Lett. 93, 31110 (2008). [CrossRef]
  17. D. E. A. Gao, “Mach–Zehnder interferometer based on coupled dielectric pillars,” Chin. Phys. Lett. 24, 3172 (2007). [CrossRef]
  18. W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008). [CrossRef]
  19. D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341 (2005). [CrossRef]
  20. J. D. Jannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 5.
  21. S. Johnson, and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  22. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited