OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 3977–3988

Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect

Chunxi Zhang, Chuansheng Li, Xiaxiao Wang, Lijing Li, Jia Yu, and Xiujuan Feng  »View Author Affiliations


Applied Optics, Vol. 51, Issue 18, pp. 3977-3988 (2012)
http://dx.doi.org/10.1364/AO.51.003977


View Full Text Article

Enhanced HTML    Acrobat PDF (1668 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design principle exploiting the geometric rotation effect for the sensing coil of the fiber-optic current sensor (FOCS) on the basis of the polarization-rotated reflection interferometer is investigated. The sensing coil is formed by winding the low birefringence single-mode optical fiber in a toroidal spiral. The effects of the linear birefringence on the scale factor of the sensor can be suppressed with the reciprocal circular birefringence by appropriately designing the geometric parameters of the sensing coil. When the rated current is 1200Arms, the designed sensing coil can ensure the scale factor error of the sensor to satisfy the requirements of the 0.2 S class specified in IEC60044-8 over a temperature range from 40°C to 60 °C.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.2240) Optical devices : Faraday effect
(260.1440) Physical optics : Birefringence

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 28, 2011
Revised Manuscript: February 14, 2012
Manuscript Accepted: March 5, 2012
Published: June 12, 2012

Citation
Chunxi Zhang, Chuansheng Li, Xiaxiao Wang, Lijing Li, Jia Yu, and Xiujuan Feng, "Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect," Appl. Opt. 51, 3977-3988 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-18-3977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Frosio and R. Dandliker, “Reciprocal reflection interferometer for a fiber-optic Faraday current sensor,” Appl. Opt. 33, 6111–6122 (1994). [CrossRef]
  2. J. N. Blake, P. Tantaswadi, and R. T. de Carvalho, “In-line Sagnac interferometer current sensor,” IEEE Trans. Power Deliv. 11, 116–121 (1996). [CrossRef]
  3. K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43, 511–526 (2005). [CrossRef]
  4. K. Bohnert, P. Gabus, J. Kostovic, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” J. Lightwave Technol. 25, 3602–3609 (2007). [CrossRef]
  5. F. Rahmatian and A. Ortega, “Application of optical current and voltage sensors in high-voltage system,” in Proceedings of IEEE Conference on Transmission & Distribution Conference and Exposition (IEEE, 2006), paper PT1-21.
  6. F. Rahmatian and J. N. Blake, “Application of high-voltage fiber-optic current sensors,” presented at IEEE Conference on Power Engineering Society General Meeting, Montreal, Quebec, Canada,19–22 June 2006.
  7. J. N. Blake and A. H. Rose, “Precision fiber-optic current sensor as a check-standard,” in Proceedings of IEEE Conference on Power Engineering Society Summer Meeting (IEEE, 2002), pp. 904–908.
  8. J. D. P. Hrabliuk, “Optical current sensors eliminate CT saturation,” in Proceedings of IEEE Conference on Power Engineering Society Winter Meeting (IEEE, 2002), pp. 1478–1481.
  9. S. X. Short, P. Tantaswadi, R. T. de Carvalho, B. D. Russell, and J. N. Blake, “An experiment study of acoustic vibration effects in optical fiber current sensors,” IEEE Trans. Power Deliv. 11, 1702–1706 (1996). [CrossRef]
  10. J. N. Blake and A. H. Rose, “Fiber-optic current transducer optimized for power metering applications,” in Proceedings of IEEE Conference on Transmission and Distribution Conference and Exposition (IEEE, 2003), pp. 405–408.
  11. J. N. Blake and A. H. Rose, “Interfacing optical CTs and VTs to relays and meters,” in Proceedings of IEEE Conference on Transmission and Distribution Conference and Exhibition (IEEE, 2006), pp. 1280–1284.
  12. F. Rahmatian, “Design and application of optical voltage and current sensors for relaying,” in Proceedings of IEEE Conference on Power Systems Conference and Exposition (IEEE, 2006), pp. 532–537.
  13. International Standard for Current Transformers, “Instrument transformers—Part 8: electronic current transformers,” IEC 60044-8 (International Electrotechnical Commission, 2002).
  14. D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fibers coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991). [CrossRef]
  15. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20, 267–276 (2002). [CrossRef]
  16. K. Kurosawa, “Optical current transducers using flint glass fiber as the Faraday sensor element,” Opt. Rev. 4, 38–44 (1997). [CrossRef]
  17. R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringence optical fibers,” J. Lightwave Technol. 7, 2084–2094 (1989). [CrossRef]
  18. V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovsky, A. I. Oussov, and S. Yu. Otrokhov, “All-fiber optical sensor of electrical current with a spun sensing element,” Proc. SPIE 6251, 62510P (2006). [CrossRef]
  19. A. H. Rose, Z. B. Ren, and G. W. Day, “Twisting and annealing optical fiber for current sensors,” J. Lightwave Technol. 14, 2492–2498 (1996). [CrossRef]
  20. F. Maystre and A. Bertholds, “Magneto-optic current sensor using a helical-fiber Fabry-Perot resonator,” Opt. Lett. 14, 587–589 (1989). [CrossRef]
  21. S. X. Short, J. U. de Arruda, A. A. Tselikov, and J. N. Blake, “Elimination of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor,” J. Lightwave Technol. 16, 1844–1850 (1998). [CrossRef]
  22. J. N. Ross, “The rotation of the polarization in low birefringence monomode optical fibers due to geometric effects,” Opt. Quantum Electron. 16, 455–461 (1984). [CrossRef]
  23. E. M. Frins and W. Dultz, “Rotation of the polarization plane in optical fibers,” J. Lightwave Technol. 15, 144–147 (1997). [CrossRef]
  24. F. Wassmann and A. Ankiewicz, “Berry’s phase analysis of polarization rotation in helicoidal fibers,” Appl. Opt. 37, 3902–3911 (1998). [CrossRef]
  25. P. Senthilkumaran, B. Culshaw, and G. Thursby, “Fiber-optic Sagnac interferometer for the observation of Berry’s topological phase,” J. Opt. Soc. Am. B 17, 1914–1919 (2000). [CrossRef]
  26. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275(1980). [CrossRef]
  27. C. D. Perciante and J. A. Ferrari, “Cancellation of bending-induced birefringence in single-mode fibers: applications to Faraday sensors,” Appl. Opt. 45, 1951–1956 (2006). [CrossRef]
  28. Z. B. Ren, Y. Wang, and Ph. Robert, “Faraday rotation and its temperature dependence measurements in low-birefringence fibers,” J. Lightwave Technol. 7, 1275–1278 (1989). [CrossRef]
  29. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glass,” Appl. Opt. 30, 1176–1178 (1991). [CrossRef]
  30. P. Polynkin and J. N. Blake, “Polarization evolution in bent spun fiber,” J. Lightwave Technol. 23, 3815–3820 (2005). [CrossRef]
  31. Z. B. Ren, Ph. Robert, and P. A. Paratte, “Temperature dependence of bend- and twist-induced birefringence in a low-birefringence fiber,” Opt. Lett. 13, 62–64 (1988). [CrossRef]
  32. H. C. Lefevre, P. Martin, J. Nehring, P. Simonpietri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1990). [CrossRef]
  33. J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of effective Verdet constant,” Appl. Opt. 35, 922–927 (1996). [CrossRef]
  34. A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” J. Lightwave Technol. 15, 803–807 (1997). [CrossRef]
  35. S. X. Short, A. A. Tselikov, J. U. de Arruda, and J. N. Blake, “Imperfect quarter-waveplate compensation in Sagnac interferometer-type current sensors,” J. Lightwave Technol. 16, 1212–1219 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited