OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4013–4020

Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology

Wenbin Huang, Yonggang Liu, Zhihui Diao, Chengliang Yang, Lishuang Yao, Ji Ma, and Li Xuan  »View Author Affiliations


Applied Optics, Vol. 51, Issue 18, pp. 4013-4020 (2012)
http://dx.doi.org/10.1364/AO.51.004013


View Full Text Article

Enhanced HTML    Acrobat PDF (606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have performed a detailed characterization of the optical properties of a holographic polymer dispersed liquid crystal (LC) transmission grating with polymer scaffolding morphology, which was fabricated with conventional high-functionality acrylate monomer under low curing intensity. Temporal evolution of the grating formation was investigated, and the amount of phase-separated LC was determined by birefringence investigation. A grating model combined with anisotropic coupled-wave theory yielded good agreement with experimental data without any fitting parameter. The results in this study demonstrate the non droplet scaffolding morphology grating is characterized by a high degree of phase separation (70%), high anisotropy, low scattering loss (<6%), and high diffraction efficiency (95%).

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.2890) Holography : Holographic optical elements
(160.3710) Materials : Liquid crystals
(260.1440) Physical optics : Birefringence

ToC Category:
Holography

History
Original Manuscript: February 22, 2012
Revised Manuscript: April 7, 2012
Manuscript Accepted: April 10, 2012
Published: June 12, 2012

Citation
Wenbin Huang, Yonggang Liu, Zhihui Diao, Chengliang Yang, Lishuang Yao, Ji Ma, and Li Xuan, "Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology," Appl. Opt. 51, 4013-4020 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-18-4013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Pavani, I. Naydenova, J. Raghavendra, S. Martin, and V. Toal, “Electro-optical switching of the holographic polymer-dispersed liquid crystal diffraction gratings,” J. Opt. A 11, 024023 (2009). [CrossRef]
  2. L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996). [CrossRef]
  3. H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50, 4295–4301 (2011). [CrossRef]
  4. M. S. Park, E. H. Kim, and B. K. Kim, “Applications of holographic PDLC for full color display,” J. Polym. Eng. 28, 169–178 (2008). [CrossRef]
  5. R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Adv. Mater. 15, 241–244 (2003). [CrossRef]
  6. V. K. S. Hisao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13, 3787–3794 (2005). [CrossRef]
  7. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90, 011109 (2007). [CrossRef]
  8. R. L. Sutherland, L. V. Natarajan, and V. P. Tondiglia, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993). [CrossRef]
  9. M. Jazbinšek, I. D. Olenik, and M. Zgonik, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001). [CrossRef]
  10. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002). [CrossRef]
  11. I. Drevenšek-Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006). [CrossRef]
  12. F. Vita, D. E. Lucchetta, R. Castagna, L. Criante, and F. Simoni, “Effects of resin addition on holographic polymer dispersed liquid crystals,” J. Opt. 11, 024021 (2009). [CrossRef]
  13. T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298 (2006). [CrossRef]
  14. J. M. Wofford, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, S. A. Siwecki, and T. J. Bunning, “Holographic polymer dispersed liquid crystal (HPDLC) transmission gratings formed by visible light initiated thiol-ene photopolymerization,” Proc. SPIE 6332, 63320Q (2006). [CrossRef]
  15. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994). [CrossRef]
  16. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004). [CrossRef]
  17. L. De Sio, N. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008). [CrossRef]
  18. R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications,” J. Opt. 11, 024017 (2009). [CrossRef]
  19. K. K. Vardanyan, J. Qi, J. N. Eakin, M. D. Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002). [CrossRef]
  20. M. D. Sarkar, N. L. Gill, J. B. Whitehead, and G. P. Crawford, “Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals,” Macromolecules 36, 630–638 (2003). [CrossRef]
  21. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002). [CrossRef]
  22. F. Vita, A. Marino, V. Tkachenko, G. Abbate, D. E. Lucchetta, L. Criante, and F. Simoni, “Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings,” Phys. Rev. E 72, 011702 (2005). [CrossRef]
  23. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, P. F. Lloyd, and T. J. Bunning, “Coherent diffraction and random scattering in thiol-ene-based holographic polymer-dispersed liquid crystal reflection gratings,” J. Appl. Phys. 99, 123104 (2006). [CrossRef]
  24. R. Caputo, A. Veltri, C. Umeton, and A. V. Sukhov, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005). [CrossRef]
  25. M. Xu, L. De Sio, R. Caputo, Cesare P. Umeton, Arthur J. H. Wachters, Dick K. G. de Boer, and H. Paul Urbach, “Characterization of the diffraction efficiency of polymer-liquid-crystal-polymer-slices gratings at all incidence angles,” Opt. Express 16, 14532–14543 (2008). [CrossRef]
  26. M. D. Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission graings,” Polymer 43, 7335–7344 (2002). [CrossRef]
  27. A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494 (2004). [CrossRef]
  28. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002). [CrossRef]
  29. R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001). [CrossRef]
  30. S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Opt. Commun. 278, 28–33 (2007). [CrossRef]
  31. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002). [CrossRef]
  32. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  33. H. Kogelnic, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 69, 2909–2946 (1969).
  34. Z. Zheng, F. Guo, Y. Liu, and L. Xuan, “Low threshold and high contrast polymer dispersed liquid crystal grating based on twisted nematic polarization modulator,” Appl. Phys. B 91, 17–20 (2008). [CrossRef]
  35. W. Huang, S. Deng, W. Li, Z. Peng, Y. Liu, L. Hu, and L. Xuan, “A polarization-independent and low scattering transmission grating for a distributed feedback cavity based on holographic polymer dispersed liquid crystal,” J. Opt. 13, 085501 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited