OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4028–4041

Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures

Guy M. Burrow, Matthieu C. R. Leibovici, and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 51, Issue 18, pp. 4028-4041 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multibeam interference represents an approach for producing one-, two-, and three-dimensional periodic optical-intensity distributions with submicrometer features and periodicities. Accordingly, interference lithography (IL) has been used in a wide variety of applications, typically requiring additional lithographic steps to modify the periodic interference pattern and create integrated functional elements. In the present work, pattern-integrated interference lithography (PIIL) is introduced. PIIL is the integration of superposed pattern imaging with IL. Then a pattern-integrated interference exposure system (PIIES) is presented that implements PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. The purpose of this system is to fabricate, in a single-exposure step, a two-dimensional periodic photonic-crystal lattice with nonperiodic functional elements integrated into the periodic pattern. The design of the basic system is presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane where the three beams simultaneously interfere and integrate a superposed image of the projected mask pattern. Appropriate performance metrics are defined in order to quantify the characteristics of the resulting photonic-crystal structure. These intensity and lattice-vector metrics differ markedly from the metrics used to evaluate traditional photolithographic imaging systems. Simulation and experimental results are presented that demonstrate the fabrication of example photonic-crystal structures in a single-exposure step. Example well-defined photonic-crystal structures exhibiting favorable intensity and lattice-vector metrics demonstrate the potential of PIIL for fabricating dense integrated optical circuits.

© 2012 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.2945) Optical design and fabrication : Illumination design
(110.3925) Imaging systems : Metrics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Design and Fabrication

Original Manuscript: March 14, 2012
Manuscript Accepted: April 21, 2012
Published: June 12, 2012

Guy M. Burrow, Matthieu C. R. Leibovici, and Thomas K. Gaylord, "Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures," Appl. Opt. 51, 4028-4041 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011). [CrossRef]
  2. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011). [CrossRef]
  3. M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005). [CrossRef]
  4. M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004). [CrossRef]
  5. R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009). [CrossRef]
  6. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electron. Lett. 33, 425–426 (1997). [CrossRef]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000). [CrossRef]
  8. R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004). [CrossRef]
  9. N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15, 501–507 (2007). [CrossRef]
  10. Y. Yang, Q. Z. Li, and G. P. Wang, “Design and fabrication of diverse metamaterial structures by holographic lithography,” Opt. Express 16, 11275–11280 (2008). [CrossRef]
  11. D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F (2007). [CrossRef]
  12. J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995). [CrossRef]
  13. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16, 10701–10709 (2008). [CrossRef]
  14. M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008). [CrossRef]
  15. R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005). [CrossRef]
  16. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13, 3777–3786 (2005). [CrossRef]
  17. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997). [CrossRef]
  18. P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008). [CrossRef]
  19. E. L. Hedberg-Dirk and U. A. Martinez, “Large-scale protein arrays generated with interferometric lithography for spatial control of cell-material interactions,” J. Nanomater. 2010, 176750 (2010). [CrossRef]
  20. J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007). [CrossRef]
  21. F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008). [CrossRef]
  22. G. M. Burrow and T. K. Gaylord, “Constrained parametric optimization of point geometries in multi-beam-interference lithography,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FWS3.
  23. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002). [CrossRef]
  24. A. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994). [CrossRef]
  25. L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006). [CrossRef]
  26. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49, 1663–1672 (2002). [CrossRef]
  27. J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt. 48, 4801–4813 (2009). [CrossRef]
  28. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001). [CrossRef]
  29. J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008). [CrossRef]
  30. N. D. Lai, J. H. Lin, W. P. Liang, C. C. Hsu, and C. H. Lin, “Precisely introducing defects into periodic structures by using a double-step laser scanning technique,” Appl. Opt. 45, 5777–5782 (2006). [CrossRef]
  31. T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006). [CrossRef]
  32. J. Murakowski, G. J. Schneider, and D. Prather, “Fabrication of 3-dimensional photonic crystals with embedded defects,” Proc. SPIE 5347, 181–189 (2004). [CrossRef]
  33. P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009). [CrossRef]
  34. C. J. M. van Rijn, “Laser interference as a lithographic nanopatterning tool,” J. Microlith. Microfab. Microsyst. 5, 011012 (2006). [CrossRef]
  35. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005). [CrossRef]
  36. B. W. Smith, “Alternative optical technologies: more than curiosities?” Proc. SPIE 7274, 21–210 (2009). [CrossRef]
  37. T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009). [CrossRef]
  38. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331–5337 (2005). [CrossRef]
  39. Y. K. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009). [CrossRef]
  40. C. A. Mack, Field Guide to Optical Lithgraphy (SPIE, 2006).
  41. G. M. Burrow and T. K. Gaylord, “Apparatus and method for photolithographic projection exposure for fabrication of one-, two-, and three-dimensional periodic structures with or without integrated patterns,” U.S. patent application 13/249,841 (30September2011).
  42. G. M. Burrow and T. K. Gaylord, “Interference projection exposure system,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWZ2.
  43. G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask for production of non-periodic functional elements integrated within periodic lattices and method for making the same,” U.S. patent application 13/250,011 (30September2011).
  44. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic-crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002). [CrossRef]
  45. A. K.-K. Wong, Optical Imaging in Projection Microlithography (SPIE Optical Engineering, 2005).
  46. J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33, 1434–1436 (2008). [CrossRef]
  47. J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).
  48. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  49. Zemax Optical Design Program User’s Guide (Focus Software, Inc., 2003).
  50. D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992). [CrossRef]
  51. MATLAB R2008a (The Mathworks, Natick, Massachusetts).
  52. J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011). [CrossRef]
  53. B. W. Smith and R. Schlief, “Understanding lens aberration and influences on lithographic imaging,” Proc. SPIE 4000, 294–306 (2000). [CrossRef]
  54. D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996). [CrossRef]
  55. M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited