OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4047–4057

Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy

Paul S. Hsu, Waruna D. Kulatilaka, Naibo Jiang, James R. Gord, and Sukesh Roy  »View Author Affiliations


Applied Optics, Vol. 51, Issue 18, pp. 4047-4057 (2012)
http://dx.doi.org/10.1364/AO.51.004047


View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N2 jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Spectroscopy

History
Original Manuscript: January 5, 2012
Manuscript Accepted: April 3, 2012
Published: June 13, 2012

Citation
Paul S. Hsu, Waruna D. Kulatilaka, Naibo Jiang, James R. Gord, and Sukesh Roy, "Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy," Appl. Opt. 51, 4047-4057 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-18-4047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, The Netherlands, 1996).
  2. K. Kohsehoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994). [CrossRef]
  3. A. M. Wodtke, L. Huwel, H. Schluter, G. Meijer, P. Andersen, and H. Voges, “High-sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988). [CrossRef]
  4. J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996). [CrossRef]
  5. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981). [CrossRef]
  6. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985). [CrossRef]
  7. S. Kostka, S. Roy, P. J. Lakusta, T. R. Meyer, M. W. Renfro, J. R. Gord, and R. Branam, “Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH,” Appl. Opt. 48, 6332–6343(2009). [CrossRef]
  8. L. A. Melton, “Spectrally separated fluorescence emissions for diesel fuel droplets and vapor,” Appl. Opt. 22, 2224–2226 (1983). [CrossRef]
  9. C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009). [CrossRef]
  10. W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows,” AIAA J. 46, 17–20 (2008). [CrossRef]
  11. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011). [CrossRef]
  12. R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosely, “Laser-induced fluorescence of formaldehyde hot bands in flames,” Appl. Opt. 39, 3712–3715 (2000). [CrossRef]
  13. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous, burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012). [CrossRef]
  14. W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996). [CrossRef]
  15. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010). [CrossRef]
  16. A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991). [CrossRef]
  17. P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998). [CrossRef]
  18. Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004). [CrossRef]
  19. G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983). [CrossRef]
  20. M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption/fluorescence combustion diagnostics,” Combust. Sci. Technol. 50, 307–322 (1986). [CrossRef]
  21. W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011). [CrossRef]
  22. F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).
  23. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989). [CrossRef]
  24. U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003). [CrossRef]
  25. R. Abd-Allah, “Solarization behaviour of manganese-containing glass: an experimental and analytical study,” Mediterranean Archaeology and Archaeometry 9, 37–53 (2009).
  26. R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics, 1986).
  27. K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999). [CrossRef]
  28. M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004). [CrossRef]
  29. G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992). [CrossRef]
  30. U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992). [CrossRef]
  31. R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003). [CrossRef]
  32. P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995). [CrossRef]
  33. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988). [CrossRef]
  34. ISO11146-1, “Lasers and laser-related equipment—test methods for laser beam widths, divergence angles and beam propagation ratios (International standard for beam quality measurement).” (International Organization for Standardization, 2005).
  35. M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–32 (1991). [CrossRef]
  36. Y. Matsuura, T. Yamamoto, and M. Miyagi, “Delivery of F2-excimer laser light by aluminum hollow fibers,” Opt. Express 6, 257–261 (2000). [CrossRef]
  37. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985). [CrossRef]
  38. X. Zhu, A. Schulzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010). [CrossRef]
  39. G. P. Agrawal, Nonlinear Fiber Optics3rd Ed (Academic, 2001).
  40. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998). [CrossRef]
  41. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978). [CrossRef]
  42. K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997). [CrossRef]
  43. R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999). [CrossRef]
  44. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998). [CrossRef]
  45. R. Pini, R. Salimbeni, and M. Vannini, “Optical fiber transmission of high power excimer laser radiation,” Appl. Opt. 26, 4185–4189 (1987). [CrossRef]
  46. R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987). [CrossRef]
  47. Y. Itoh, K. Kunitomo, M. Obara, and T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956–2961 (1983). [CrossRef]
  48. M. Campbell, R. Zheng, and K. W. D. Ledingham, “An investigation into the suitability of all-silica UV fibres for use in pulsed laser analysis techniques,” Meas. Sci. Technol. 5, 726–730 (1994). [CrossRef]
  49. C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited