OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4176–4185

Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer

Mohammad Sabaeian and Ali Khaledi-Nasab  »View Author Affiliations


Applied Optics, Vol. 51, Issue 18, pp. 4176-4185 (2012)
http://dx.doi.org/10.1364/AO.51.004176


View Full Text Article

Enhanced HTML    Acrobat PDF (1321 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, the effects of size and wetting layer (WL) on subband electronic envelop functions, eigenenergies, linear and nonlinear absorption coefficients, and refractive indices of a dome-shaped InAs/GaAs quantum dot (QD) were investigated. In our model, a dome of InAs QD with its WL embedded in a GaAs matrix was considered. A finite height barrier potential at the InAs/GaAs interface was assumed. To calculate envelope functions and eigenenergies, the effective one-electronic-band Hamiltonian and electron effective mass approximation were used. The linear and nonlinear optical properties were calculated by the density matrix formalism.

© 2012 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

History
Original Manuscript: November 16, 2011
Revised Manuscript: February 20, 2012
Manuscript Accepted: April 13, 2012
Published: June 18, 2012

Citation
Mohammad Sabaeian and Ali Khaledi-Nasab, "Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer," Appl. Opt. 51, 4176-4185 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-18-4176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Teleb, K. Abedi, and S. Golmohammadi, “Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection,” Appl. Opt. 50, 608–617(2011). [CrossRef]
  2. A. Karimkhani and M. K. Moravvej-Farsh, “Temperature dependence of optical near field energy transfer rate between two quantum dots in nanophotonic devices,” Appl. Opt. 49, 1012–1019 (2010). [CrossRef]
  3. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999). [CrossRef]
  4. P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1–40 (2004). [CrossRef]
  5. K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009). [CrossRef]
  6. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007). [CrossRef]
  7. B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006). [CrossRef]
  8. P. A. S. Jorge, M. Mayeh, R. Benrashid, P. Caldas, J. L. Santos, and F. Farahi, “Applications of quantum dots in optical fiber luminescent oxygen sensors,” Appl. Opt. 45, 3760–3767 (2006). [CrossRef]
  9. Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011). [CrossRef]
  10. S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006). [CrossRef]
  11. A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010). [CrossRef]
  12. Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008). [CrossRef]
  13. D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002). [CrossRef]
  14. E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003). [CrossRef]
  15. J. J. Coleman, J. D. Young, and A. Garg, “Semiconductor quantum dot laser: a tutorial,” J. Lightwave Technol. 29, 499–510 (2011). [CrossRef]
  16. M. R. K. Vahdani and G. Rezaei, “Linear and nonlinear optical properties of a hydrogen donor in lens-shaped quantum dots,” Phys. Lett. A 373, 3079–3084 (2009). [CrossRef]
  17. M. Barati, G. Rezaei, and M. R. K. Vahdani, “Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Phys. Status Solidi B 244, 2605–2610 (2007). [CrossRef]
  18. K. J. Kuhn, G. U. Lyengar, and S. Yee, “Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells,” J. Appl. Phys. 70, 5010–5017 (1991). [CrossRef]
  19. V.-T. Rangel-Kuoppa, G. Chen, and W. Jantsch, “Electrical study of self-assembled Ge quantum dots in p-type silicon. Temperature dependent capacitance voltage and DLTS study,” Solid State Phenom. 178–179, 67–71 (2011). [CrossRef]
  20. C. Lang, D. Nguen-Manh, and D. J. H. Cochayne, “Modelling Ge/Si quantum dot using finite element analysis and atomistic simulation,” J. Phys. Conf. Ser. 29, 141–144 (2006). [CrossRef]
  21. X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009). [CrossRef]
  22. N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005). [CrossRef]
  23. N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004). [CrossRef]
  24. V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004). [CrossRef]
  25. O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained QDs modeled by 8-band k·ptheory,” Phys. Rev. B 59, 5688–5701 (1999). [CrossRef]
  26. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).
  27. I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005). [CrossRef]
  28. X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008). [CrossRef]
  29. Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001). [CrossRef]
  30. D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50, 11687–11692 (1994). [CrossRef]
  31. T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001). [CrossRef]
  32. A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002). [CrossRef]
  33. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” J. Phys. 16, S3277–S3318 (2004). [CrossRef]
  34. N. Tansua and L. J. Mawst, “Current injection efficiency of InGaAsN quantum well lasers,” J. Appl. Phys. 97, 054502 (2005). [CrossRef]
  35. M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k·p model,” Phys. Rev. Lett. 74, 155322 (2006). [CrossRef]
  36. N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007). [CrossRef]
  37. H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009). [CrossRef]
  38. S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011). [CrossRef]
  39. D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006). [CrossRef]
  40. S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005). [CrossRef]
  41. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006). [CrossRef]
  42. R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001). [CrossRef]
  43. M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000). [CrossRef]
  44. R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004). [CrossRef]
  45. R. V. N. Melnik and K. N. Zotsenko, “Finite element analysis of coupled electronic states in quantum dot nanostructures,” Model. Simul. Mat. Sci. Eng. 12, 465–477 (2004). [CrossRef]
  46. F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996). [CrossRef]
  47. R. V. N. Melnik and M. Willatzen, “Modelling coupled motion of electrons in quantum dots with wetting layers,” in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems (NSTI, 2002), pp. 506–509.
  48. D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003). [CrossRef]
  49. J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004). [CrossRef]
  50. J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002). [CrossRef]
  51. M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011). [CrossRef]
  52. R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000). [CrossRef]
  53. K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000). [CrossRef]
  54. T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010). [CrossRef]
  55. J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009). [CrossRef]
  56. G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011). [CrossRef]
  57. F. Zhang, L. Zhang, Y.-X. Wang, and R. Claus, “Enhanced absorption and electro-optic Pockels effect of electrostatically self-assembled CdSe quantum dots,” Appl. Opt. 44, 3969–3976 (2005). [CrossRef]
  58. A. D. Seddik and I. Zorkani, “Optical properties of a magneto-donor in a quantum dot,” Phys. E 28, 339–346 (2005). [CrossRef]
  59. A. Rostami, H. Rasooli Saghai, N. Sadoogi, and H. Baghban Asghari Nejad, “Proposal for ultra-high performance infrared quantum dot,” Opt. Express 16, 2752–2763 (2008). [CrossRef]
  60. C. H. Liu and B.-R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. A 372, 888–892 (2008). [CrossRef]
  61. M. R. K. Vahdani and G. Rezaei, “Intersubband optical properties absorption coefficients and refractive index changes in a parabolic cylinder quantum dot,” Phys. Lett. A 374, 637–643 (2010). [CrossRef]
  62. W. Xie, “Laser radiation effects on optical absorptions and refractive index in a quantum dot,” Opt. Commun. 283, 3703–3706 (2010). [CrossRef]
  63. G. Rezaei, Z. Mousazadeh, and B. Veseghi, “Nonlinear optical properties of a two dimensional elliptic quantum dot,” Physica E 42, 1477–1481 (2010). [CrossRef]
  64. L. Lu and W. Xie, “Impurity and exciton effects on the nonlinear optical properties of a disc-like quantum dot under a magnetic field,” Superlatt. Microstuct. 50, 40–49 (2011). [CrossRef]
  65. W. Xie, “A study of nonlinear optical properties of a negative donor quantum dot,” Opt. Commun. 284, 4756–4760(2011). [CrossRef]
  66. S. Liang and W. Xie, “Effects of the hydrogenic pressure and temperature on optical properties of a hydrogenic impurity in the disc-like quantum dot,” Physica B 406, 2224–2230 (2011). [CrossRef]
  67. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011). [CrossRef]
  68. S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011). [CrossRef]
  69. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011). [CrossRef]
  70. R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011). [CrossRef]
  71. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110, 113110 (2011). [CrossRef]
  72. Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012). [CrossRef]
  73. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-GaN quantum wells laser active region in mid-and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98, 171111 (2011). [CrossRef]
  74. J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011). [CrossRef]
  75. S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003). [CrossRef]
  76. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005). [CrossRef]
  77. S. Datta, Quantum Phenomena: Modular Series on Solid-State Devices, Vol. 8 (Addison-Wesley, 1989).
  78. R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited