OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 18 — Jun. 20, 2012
  • pp: 4215–4218

Diffractive optical elements for the formation of “light bottle” intensity distributions

Vladimir Pavelyev, Vladimir Osipov, Denis Kachalov, Svetlana Khonina, Wei Cheng, Arune Gaidukeviciute, and Boris Chichkov  »View Author Affiliations

Applied Optics, Vol. 51, Issue 18, pp. 4215-4218 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Application of the two-photon polymerization (2PP) technique for the fabrication of binary radial diffractive optical elements (DOEs) to form a bottle-like intensity distribution, or “light bottle,” is studied. Computer modeling and fabrication of a binary DOE for the formation of the desired light distributions are realized. The results of scanning electron microscopy analysis of the diffractive relief produced by the 2PP technique and an investigation of the optical properties of the fabricated elements are presented.

© 2012 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1970) Diffraction and gratings : Diffractive optics
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Optical Design and Fabrication

Original Manuscript: January 30, 2012
Revised Manuscript: May 11, 2012
Manuscript Accepted: May 14, 2012
Published: June 19, 2012

Vladimir Pavelyev, Vladimir Osipov, Denis Kachalov, Svetlana Khonina, Wei Cheng, Arune Gaidukeviciute, and Boris Chichkov, "Diffractive optical elements for the formation of “light bottle” intensity distributions," Appl. Opt. 51, 4215-4218 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999). [CrossRef]
  2. J. Arlt, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000). [CrossRef]
  3. D. Yelin, B. E. Bouma, and G. J. Tearney, “Generating an adjustable three-dimensional dark focus,” Opt. Lett. 29, 661–663 (2004). [CrossRef]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  5. V. A. Soifer, V. V. Kotlyar, and S. N. Khonina, “Optical microparticle manipulation: advances and new possibilities created by diffractive optics,” Phys. Part. Nucl. 35, 733–766 (2004).
  6. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef]
  7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  8. I. Manek, Yu. B. Ovchinnikov, and R. Grimm, “Generation of a hollow laser beam for atom trapping using an axicon,” Opt. Commun. 147, 67–70 (1998). [CrossRef]
  9. S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, K. Jefimovs, J. Simonen, and J. Turunen, “Rotation of microparticles with Bessel beams generated by diffractive elements,” J. Mod. Opt. 51, 2167–2184 (2004). [CrossRef]
  10. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992). [CrossRef]
  11. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849–861(2005). [CrossRef]
  12. V. V. Kotlyar, S. N. Khonina, A. A. Kovalev, V. A. Soifer, H. Elfstrom, and J. Turunen, “Diffraction of a plane, finite-radius wave by a spiral phase plate,” Opt. Lett. 31, 1597–1599 (2006). [CrossRef]
  13. H.-Y. Tsai, H. I. Smith, and R. Menon, “Fabrication of spiral-phase diffractive elements using scanning-electron-beam lithography,” J. Vac. Sci. Technol. B 25, 2068–2071 (2007). [CrossRef]
  14. V. V. Koltyar and S. N. Khonina, “Multi-order diffractive optical elements to process data,” in Perspectives in Engineering OpticsK. Singh and V. K. Rastogi, eds. (Anita Publications, 2003), pp. 47–56.
  15. S. N. Khonina, R. V. Skidanov, V. V. Kotlyar, V. A. Soifer, and J. Turunen, “DOE-generated laser beams with given orbital angular moment: application for micromanipulation,” Proc. SPIE 5962, 59622W (2005). [CrossRef]
  16. V. P. Osipov, V. S. Pavelyev, D. G. Kachalov, A. Zukauskas, and B. N. Chichkov, “Realization of binary radial diffractive optical elements by two-photon polymerization technique,” Opt. Express 18, 25808–25814 (2010). [CrossRef]
  17. R. Piestun, B. Spektor, and J. Shamir, “Wave fields in three dimensions: analysis and synthesis,” J. Opt. Soc. Am. A 13, 1837–1848 (1996). [CrossRef]
  18. V. A. Soifer, ed., Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).
  19. D. G. Kachalov, K. A. Gamazkov, V. S. Pavelyev, and S. N. Khonina, “Optimization of binary DOE for ‘light trap’ distribution forming,” (in Russian; English summary), Comput. Opt. 35, 70–76 (2011).
  20. D. G. Kachalov, V. S. Pavelyev, S. N. Khonina, R. V. Skidanov, and O. Yu. Moiseev, “Application of the direct search in solving a problem of forming longitudinal distribution of intensity,” J. Mod. Opt. 58, 69–76 (2011). [CrossRef]
  21. M. Meister and R. J. Winfield, “Novel approaches to direct search algorithms for the design of diffractive optical elements,” Opt. Commun. 203, 39–49 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited