OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4269–4274

Influence of pretilt angle on disclination lines of liquid crystal lens

Chia-Hao Kuo, Wei-Che Chien, Chia-Ting Hsieh, Chi-Yen Huang, Jyun-Jie Jiang, Yan-Cheng Li, Ming-Fei Chen, Yi-Ping Hsieh, Hui-Lung Kuo, and Chi-Huang Lin  »View Author Affiliations


Applied Optics, Vol. 51, Issue 19, pp. 4269-4274 (2012)
http://dx.doi.org/10.1364/AO.51.004269


View Full Text Article

Enhanced HTML    Acrobat PDF (577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This article investigates the effect of pretilt angle on disclination lines of liquid crystal (LC) lenses. When the pretilt angle of LCs is higher than 7°, the disclination lines are reduced and are moved to the boundary of the LC lens. The disclination lines at the boundary do not influence the focused beam profile of the LC lens. As the pretilt angle of LCs further increases, the disclination lines at the boundary become almost invisible. However, the interference rings become asymmetrical. The response time of an LC lens with a pretilt angle higher than 7° is 60% of the conventionally homogeneous LC lens. This value is a result of the decrease in the rotation angle of the LCs and the reduced disclination lines.

© 2012 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: March 6, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: May 18, 2012
Published: June 22, 2012

Citation
Chia-Hao Kuo, Wei-Che Chien, Chia-Ting Hsieh, Chi-Yen Huang, Jyun-Jie Jiang, Yan-Cheng Li, Ming-Fei Chen, Yi-Ping Hsieh, Hui-Lung Kuo, and Chi-Huang Lin, "Influence of pretilt angle on disclination lines of liquid crystal lens," Appl. Opt. 51, 4269-4274 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-19-4269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35, 336–338 (2010). [CrossRef]
  2. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480–484 (2000). [CrossRef]
  3. H. C. Lin and Y. H. Lin, “An electrically tunable focusing pico-projector adopting a liquid crystal lens,” Jpn. J. Appl. Phys. 49, 102502 (2010). [CrossRef]
  4. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979). [CrossRef]
  5. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007). [CrossRef]
  6. Y. Mao and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433, 229–236 (2005). [CrossRef]
  7. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004). [CrossRef]
  8. T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991). [CrossRef]
  9. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992). [CrossRef]
  10. M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003). [CrossRef]
  11. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002). [CrossRef]
  12. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6, 471–485 (1999). [CrossRef]
  13. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92, 061102 (2008). [CrossRef]
  14. C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express 19, 14999–15008 (2011). [CrossRef]
  15. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45, 4576–4582 (2006). [CrossRef]
  16. T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystal microlens,” Mol. Cryst. Liq. Cryst. 199, 27–35 (1991). [CrossRef]
  17. F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett. 88, 051910 (2006). [CrossRef]
  18. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  19. T. J. Scheffer, and J. Nehring, “Accurate determination of liquid-crystal tilt bias angles,” J. Appl. Phys. 48, 1783–1792 (1977). [CrossRef]
  20. M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys. 40, 6012–6016 (2001). [CrossRef]
  21. S. Matsumoto, M. Kawamoto, and K. Mizunoya, “Field-induced deformation of hybrid-aligned nematic liquid crystals: new multicolor liquid crystal display,” J. Appl. Phys. 47, 3842–3845 (1976). [CrossRef]
  22. Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85, 3354–3356 (2004). [CrossRef]
  23. H. Wang, T. X. Wu, X. Zhu, and S. T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys. 95, 5502–5508 (2004). [CrossRef]
  24. X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Tech. 3, 280–283 (2007). [CrossRef]
  25. E. J. Acosta, M. J. Towler, and H. G. Walton, “The role of surface tilt in the operation of pi-cell liquid crystal devices,” Liq. Cryst. 27, 977–984 (2000). [CrossRef]
  26. A. Bogi, P. Martinot-Lagarde, I. Dozov, and M. Nobili, “Anchoring screening of defects interaction in a nematic liquid crystal,” Phys. Rev. Lett. 89, 225501 (2002). [CrossRef]
  27. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003). [CrossRef]
  28. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004). [CrossRef]
  29. S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988). [CrossRef]
  30. S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57, 986–988 (1990). [CrossRef]
  31. H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003). [CrossRef]
  32. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Tech. 1, 151–156 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited