OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4325–4332

Compact silicon diffractive sensor: design, fabrication, and prototype

Jonathan S. Maikisch and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 51, Issue 19, pp. 4325-4332 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An in-plane constant-efficiency variable-diffraction-angle grating and an in-plane high-angular-selectivity grating are combined to enable a new compact silicon diffractive sensor. This sensor is fabricated in silicon-on-insulator and uses telecommunications wavelengths. A single sensor element has a micron-scale device size and uses intensity-based (as opposed to spectral-based) detection for increased integrability. In-plane diffraction gratings provide an intrinsic splitting mechanism to enable a two-dimensional sensor array. Detection of the relative values of diffracted and transmitted intensities is independent of attenuation and is thus robust. The sensor prototype measures refractive index changes of 104. Simulations indicate that this sensor configuration may be capable of measuring refractive index changes three or four orders of magnitude smaller. The characteristics of this sensor type make it promising for lab-on-a-chip applications.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.0130) Integrated optics : Integrated optics
(130.6010) Integrated optics : Sensors

ToC Category:
Diffraction and Gratings

Original Manuscript: April 4, 2012
Manuscript Accepted: May 21, 2012
Published: June 25, 2012

Jonathan S. Maikisch and Thomas K. Gaylord, "Compact silicon diffractive sensor: design, fabrication, and prototype," Appl. Opt. 51, 4325-4332 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sensor. Actuat. B-Chem. 113, 774–781 (2006). [CrossRef]
  2. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors(Springer, 2006), Vol. 4.
  3. P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007). [CrossRef]
  4. J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011). [CrossRef]
  5. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensor. Actuat. B-Chem. 29, 261–267 (1995). [CrossRef]
  6. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003). [CrossRef]
  7. L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009). [CrossRef]
  8. B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006). [CrossRef]
  9. L. U. Kempen and R. E. Kunz, “Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications,” Sensor. Actuat. B-Chem. 39, 295–299 (1997). [CrossRef]
  10. B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sensor. Actuat. A-Phys. 141, 299–306 (2008). [CrossRef]
  11. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010). [CrossRef]
  12. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006). [CrossRef]
  13. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007). [CrossRef]
  14. J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011). [CrossRef]
  15. D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999). [CrossRef]
  16. MicroChem Corp., Newton, Mass., www.microchem.com .
  17. Soitec, Bernin, France, www.soitec.com .
  18. H. Kogelnik and V. Ramaswamy, “Scaling rules for thin-film optical waveguides,” Appl. Opt. 13, 1857–1862 (1974). [CrossRef]
  19. J. S. Maikisch and T. K. Gaylord, “Optimum parallel-face slanted surface-relief gratings,” Appl. Opt. 46, 3674–3681 (2007). [CrossRef]
  20. S.-D. Wu, T. K. Gaylord, J. S. Maikisch, and E. N. Glytsis, “Optimization of anisotropically etched silicon surface-relief gratings for substrate-mode optical interconnects,” Appl. Opt. 45, 15–21 (2006). [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  22. E. N. Glytsis and T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990). [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  24. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007). [CrossRef]
  25. Zeon Chemicals L. P., Louisville, Ky., www.zeonchemicals.com .
  26. D. K. Brown, “Nanometer scale Bosch process silicon etching,” presented at IEEE Electron Ion Photon Beam and Nanofabrication Conference, Anchorage, Alaska, June 2010.
  27. B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009). [CrossRef]
  28. S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009). [CrossRef]
  29. S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008). [CrossRef]
  30. M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009). [CrossRef]
  31. J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009). [CrossRef]
  32. B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119 (2006). [CrossRef]
  33. B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010). [CrossRef]
  34. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (Ghent University, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited