OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4353–4358

Writing and probing light-induced waveguides thanks to an endlessly single-mode photonic crystal fiber

Kien Phan Huy, Jassem Safioui, Blandine Guichardaz, Fabrice Devaux, and Mathieu Chauvet  »View Author Affiliations


Applied Optics, Vol. 51, Issue 19, pp. 4353-4358 (2012)
http://dx.doi.org/10.1364/AO.51.004353


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate writing and probing of light-induced waveguides in photorefractive bulk LiNbO3 crystal using an endlessly single-mode photonic crystal fiber. The optical waveguides are written at visible wavelengths by slightly raising the ferroelectric crystal temperature to benefit from the pyroelectric-driven photorefractive effect and the guiding properties are investigated at telecom wavelengths using the same photonic crystal fiber. End butt coupling with this photonic crystal fiber enables writing and probing of optical waveguides due to the self-alignment properties of spatial solitons.

© 2012 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(230.7370) Optical devices : Waveguides
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Optical Devices

History
Original Manuscript: March 20, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 11, 2012
Published: June 26, 2012

Citation
Kien Phan Huy, Jassem Safioui, Blandine Guichardaz, Fabrice Devaux, and Mathieu Chauvet, "Writing and probing light-induced waveguides thanks to an endlessly single-mode photonic crystal fiber," Appl. Opt. 51, 4353-4358 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-19-4353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985). [CrossRef]
  2. A. D. Boardman and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Academic, 2001).
  3. S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, 2001).
  4. K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71, 3275–3278 (1993). [CrossRef]
  5. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000). [CrossRef]
  6. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993). [CrossRef]
  7. M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994). [CrossRef]
  8. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004). [CrossRef]
  9. M. Chauvet, “Temporal analysis of open-circuit dark photovoltaic spatial solitons,” J. Opt. Soc. Am. B 20, 2515–2522 (2003). [CrossRef]
  10. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17, 22209–22216 (2009). [CrossRef]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef]
  12. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  13. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef]
  14. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28, 1433–1435 (2003). [CrossRef]
  15. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef]
  16. J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO3,” J. Opt. Soc. Am. B 26, 487–492 (2009). [CrossRef]
  17. K. K. Wong, Properties of Lithium Niobate (The Institution of Engineering and Technology, 2002).
  18. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  19. M.-F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091–3101 (1997). [CrossRef]
  20. T. Tamir, Guided-Wave Optoelectronics, Springer Series in Electronics and Photonics (Springer Verlag, 1990).
  21. F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. A 81, 013825(2010). [CrossRef]
  22. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited