OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4359–4369

Polarization averaged short-time Fourier transform technique for distributed fiber birefringence characterization using Brillouin gain

Shangran Xie, Liang Chen, and Xiaoyi Bao  »View Author Affiliations


Applied Optics, Vol. 51, Issue 19, pp. 4359-4369 (2012)
http://dx.doi.org/10.1364/AO.51.004359


View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polarization averaged short-time Fourier transform (PASTFT) technique is developed for distributed fiber birefringence characterization based on counterpropagating stimulated Brillouin scattering (SBS) gain signal. This technique can be used for the birefringence characterization of the general elliptical birefringent fiber. A theoretical model on polarization matching of counterpropagating SBS process is established. The performance of the short-time Fourier transform (STFT) method and the PASTFT technique is analyzed by using the simulation of the theoretical model. Simulation results show that the process of polarization average could effectively reduce the birefringence characterization error caused by the polarization dependence of the local period of SBS gain. A less than 8% normalized root mean square error is achieved for the characterization of the length of the birefringence vector on elliptical birefringent fibers. The PASTFT technique is experimentally verified by the distributed measurement of beat length and differential group delay of a standard single-mode fiber via the Brillouin optical time domain analysis system.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 6, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 29, 2012
Published: June 26, 2012

Citation
Shangran Xie, Liang Chen, and Xiaoyi Bao, "Polarization averaged short-time Fourier transform technique for distributed fiber birefringence characterization using Brillouin gain," Appl. Opt. 51, 4359-4369 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-19-4359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992). [CrossRef]
  2. F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990). [CrossRef]
  3. C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurement based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994). [CrossRef]
  4. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998). [CrossRef]
  5. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005). [CrossRef]
  6. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry,” J. Lightwave Technol. 24, 4149–4154 (2006). [CrossRef]
  7. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981). [CrossRef]
  8. S. V. Shatalin and A. J. Rogers, “Location of high PMD sections of installed system fiber,” J. Lightwave Technol. 24, 3875–3881 (2006). [CrossRef]
  9. F. Corsi, A. Galtarossa, and L. Palmieri, “Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique,” J. Lightwave Technol. 16, 1832–1843 (1998). [CrossRef]
  10. F. Corsi, A. Galtarossa, and L. Palmieri, “Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers,” J. Lightwave Technol. 17, 1172–1178 (1999). [CrossRef]
  11. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurement of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25, 384–386 (2000). [CrossRef]
  12. B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a polarization-OTDR in optical fibers,” J. Lightwave Technol. 17, 1843–1848 (1999). [CrossRef]
  13. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Statistical characterization of fiber random birefringence,” Opt. Lett. 25, 1322–1324 (2000). [CrossRef]
  14. L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011). [CrossRef]
  15. H. Dong, P. Shum, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Spectral-resolved backreflection measurement of polarization mode dispersion in optical fibers,” Opt. Lett. 32, 1665–1667 (2007). [CrossRef]
  16. A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008). [CrossRef]
  17. L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011). [CrossRef]
  18. A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002). [CrossRef]
  19. L. Palmieri, “Polarization properties of spun single-mode fibers,” J. Lightwave Technol. 24, 4075–4088 (2006). [CrossRef]
  20. R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.
  21. J. G. Ellison and A. S. Siddiqui, “A fully polarimetric optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 10, 246–248 (1998). [CrossRef]
  22. J. G. Ellison and A. S. Siddiqui, “Automatic matrix-based analysis method for extraction of optical fiber parameters from polarimetric optical time domain reflectometry data,” J. Lightwave Technol. 18, 1226–1232 (2000). [CrossRef]
  23. T. Gogolla and K. Krebber, “Distributed beat length measurement in single-mode optical fibers using stimulated Brillouin-scattering and frequency-domain analysis,” J. Lightwave Technol. 18, 320–328 (2000). [CrossRef]
  24. L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.
  25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  26. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998). [CrossRef]
  27. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proceedings of OFC/NFOEC 2008 (IEEE, 2008), paper OML7.
  28. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008). [CrossRef]
  29. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.
  30. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995). [CrossRef]
  31. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000). [CrossRef]
  32. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991). [CrossRef]
  33. F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990). [CrossRef]
  34. N. Gisin, J. P. V. der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9, 821–827 (1991). [CrossRef]
  35. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett. 22, 1029–1030 (1986). [CrossRef]
  36. S. Xie, M. Pang, X. Bao, and L. Chen, “Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing,” Opt. Express 20, 6385–6399 (2012). [CrossRef]
  37. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994). [CrossRef]
  38. M. Niklès, L. Thévenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996). [CrossRef]
  39. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980). [CrossRef]
  40. S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode fibers,” Opt. Lett. 3, 60–62 (1978). [CrossRef]
  41. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited