OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4430–4435

Lithography-free sub-100 nm nanocone array antireflection layer for low-cost silicon solar cell

Zhida Xu, Jing Jiang, and Gang Logan Liu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 19, pp. 4430-4435 (2012)
http://dx.doi.org/10.1364/AO.51.004430


View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-density and -uniformity sub-100 nm surface-oxidized silicon nanocone forest structure is created and integrated onto the existing texturization microstructures on a photovoltaic device surface by a one-step high-throughput plasma-enhanced texturization method. We suppressed the broadband optical reflection on chemically textured grade-B silicon solar cells for up to 70.25% through this nanomanufacturing method. The performance of the solar cell is improved with the short-circuit current increased by 7.1%, fill factor increased by 7.0%, and conversion efficiency increased by 14.66%. Our method demonstrates the potential to improve the photovoltaic device performance with low-cost and high-throughput nanomanufacturing technology.

© 2012 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 19, 2012
Manuscript Accepted: May 26, 2012
Published: June 27, 2012

Citation
Zhida Xu, Jing Jiang, and Gang Logan Liu, "Lithography-free sub-100 nm nanocone array antireflection layer for low-cost silicon solar cell," Appl. Opt. 51, 4430-4435 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-19-4430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005). [CrossRef]
  2. M. Yamaguchi, “III–V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75, 261–269 (2003). [CrossRef]
  3. L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009). [CrossRef]
  4. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics Res. Appl. 12, 69–92 (2004). [CrossRef]
  5. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
  6. W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519(1961). [CrossRef]
  7. C. S. Solanki, Solar Photovoltaics: Fundamentals Technologies and Applications (PHI Learning, 2009).
  8. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006). [CrossRef]
  9. B. Sopori, “Silicon nitride processing for control of optical and electronic properties of silicon solar cells,” J. Electron. Mater. 32, 1034–1042 (2003). [CrossRef]
  10. T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007). [CrossRef]
  11. J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng., R 70, 330–340 (2010). [CrossRef]
  12. C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006). [CrossRef]
  13. L. Escoubas, R. Bouffaron, V. Brissonneau, J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett. 35, 1455–1457 (2010). [CrossRef]
  14. J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells 95, 2–6 (2011). [CrossRef]
  15. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006). [CrossRef]
  16. J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.
  17. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000). [CrossRef]
  18. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004). [CrossRef]
  19. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007). [CrossRef]
  20. H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009). [CrossRef]
  21. V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002). [CrossRef]
  22. C. Chang, J. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett. 36, 2354–2356 (2011). [CrossRef]
  23. R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45, 19–29 (1977). [CrossRef]
  24. Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011). [CrossRef]
  25. Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011). [CrossRef]
  26. J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011). [CrossRef]
  27. Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011). [CrossRef]
  28. M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011). [CrossRef]
  29. Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011). [CrossRef]
  30. ASTM International, Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables (ASTM International, 2006).
  31. B. G. Streetman and S. K. Banerjee, Solid State Electronic Device (PHI Learning Private Limited, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited