OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 19 — Jul. 1, 2012
  • pp: 4554–4562

Temperature measurement of axisymmetric flame under the influence of magnetic field using lensless Fourier transform digital holography

Shobhna Sharma, Gyanendra Sheoran, and Chandra Shakher  »View Author Affiliations

Applied Optics, Vol. 51, Issue 19, pp. 4554-4562 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper the effect of uniform magnetic field B on the temperature and temperature profile of the diffusion flame is investigated using lensless Fourier transform digital holographic interferometry. The evaluation of temperature profile reveals that the width of flame as well as the maximum value of temperature inside the flame is increased.

© 2012 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: February 21, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: May 22, 2012
Published: June 29, 2012

Shobhna Sharma, Gyanendra Sheoran, and Chandra Shakher, "Temperature measurement of axisymmetric flame under the influence of magnetic field using lensless Fourier transform digital holography," Appl. Opt. 51, 4554-4562 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Faraday, “On the diamagnetic conditions of flames and gases,” London Edinburgh Dublin Philos. Mag. J. Sci. 31, 401–421 (1847). [CrossRef]
  2. H. Hayashi, “The external magnetic field effect on the emission intensity of the A2∑+→X2Π(0−0) transition of the OH radical in flames,” Chem. Phys. Lett. 87, 113–116 (1982). [CrossRef]
  3. A. V. Engle and J. R. Cozens, “Flames plasmas,” Adv. Electron. Electron Phys. 20, 99–146 (1964).
  4. S. Ueno, H. Esaki, and K. Harada, “Magnetic field effects on combustion,” IEEE Transl. J. Magn. Jpn. TJMJ-2, 861–862 (1987). [CrossRef]
  5. S. Ueno and K. Harada, “Effects of magnetic fields on flames and gas flow,” IEEE Trans. Magn. 23, 2752–2754 (1987). [CrossRef]
  6. T. Aoki, “Radical emissions and butane diffusion flames exposed to uniform magnetic fields encircled by magnetic gradient fields,” Jpn. J. Appl. Phys. 29, 952–957 (1990). [CrossRef]
  7. N. I. Wakayama, “Effect of a gradient magnetic field on the combustion reaction of methane in air,” Chem. Phys. Lett. 188, 279–281 (1992). [CrossRef]
  8. N. I. Wakayama, “Magnetic promotion of combustion in diffusion flames,” Combust. Flame 93, 207–214 (1993). [CrossRef]
  9. E. Yamada, M. Shinoda, H. Yamashita, and K. Kitagawa, “Numerical analysis of a hydrogen-oxygen diffusion flame in vertical or horizontal gradient of magnetic field,” Combust. Sci. Technol. 174, 149–164 (2002). [CrossRef]
  10. J. Baker and M. E. Calvert, “A study of the characteristics of slotted laminar jet diffusion flames in the presence of nonuniform magnetic fields,” Combust. Flame 133, 345–357 (2003). [CrossRef]
  11. S. Kinoshita, T. Takagi, H. Kotera, and N. I. Wakayama, “Numerical simulation of diffusion flames with and without magnetic field,” IEEE Trans. Appl. Supercond. 14, 1685–1688 (2004). [CrossRef]
  12. A. Gupta and J. Baker, “Uniform magnetic fields and equilibrium flame temperatures,” J. Thermophys. Heat Transfer 21, 520–525 (2007). [CrossRef]
  13. V. Gilard, P. Gillon, J.-N. Blanchard, and B. Sarh, “Influence of a horizontal magnetic field on a coflow methane/air diffusion flame,” Combust. Sci. Technol. 180, 1920–1935 (2008). [CrossRef]
  14. F. Khaldi, K. Messadek, and A. M. Benselama, “Isolation of gravity effects on diffusion flames by magnetic field,” Microgravity Sci. Technol. 22, 1–5 (2010). [CrossRef]
  15. P. Gillon, J. N. Blachard, and V. Gilard, “Magnetic field influence on coflow laminar diffusion flames,” Russ. J. Phys. Chem. B 4, 279–285 (2010). [CrossRef]
  16. S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51, 3228–3235 (2012).
  17. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  18. C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999). [CrossRef]
  19. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Academic, 2005).
  20. M. Born and E. F. Wolf, Principles of Optics, 4th ed. (Academic, 1978), Chap. 2, p. 102.
  21. Y. T. Cho and S.-J. Na, “Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources,” Meas. Sci. Technol. 16, 878–884 (2005). [CrossRef]
  22. R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radiosci. 23, 713–720 (1988). [CrossRef]
  23. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited